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About NAHEP-CAAST at IARI, New Delhi 

Centre for Advanced Agricultural Science and Technology (CAAST) is a new initiative and student 

centric subcomponent of World Bank sponsored National Agricultural Higher Education Project 

(NAHEP) granted to the Indian Council of Agricultural Research, New Delhi to provide a platform for 

strengthening educational and research activities of post graduate and doctoral students. The ICAR-

Indian Agricultural Research Institute, New Delhi was selected by the NAHEP-CAAST programme. 

NAHEP sanctioned Rs 19.99 crores for the project on “Genomic assisted crop improvement and 

management” under CAAST programme. The project at IARI specifically aims at inculcating genomics 

education and skills among the students and enhancing the expertise of the faculty of IARI in the area 

of genomics. 

Objectives: 

1. To develop online teaching facility and online courses for enhancing the teaching and learning 
efficiency, and scientific communication skills 

2. To develop and/or strengthen state-of-the art next-generation genomics and phenomics 
facilities for producing quality PG and Ph.D.students 

3. To develop collaborative research programmes with institutes of international repute and 
industries in the area of genomics and phenomics 

4. To enhance the skills of faculty and PG students of IARI and NARES 

5. To generate and analyze big data in genomics and phenomics of crops, microbes and pests for 
genomics augmentation of crop improvement and management 

IARI’s CAAST project is unique as it aimed at providing funding and training support to the M.Sc. and 

Ph.D. students from different disciplines who are working in the area of genomics. It will organize 

lectures and training programmes, send IARI students for training at expert laboratories and research 

institutions abroad, and cover students from several disciplines. It will provide opportunities to the 

students and faculty to gain international exposure. Further, the project envisages developing a 

modern lab named as Discovery Centre that will serve as a common facility for students’ research at 

IARI. 

Core-Team Members: 
 

S.No. Name of the Faculty Discipline Institute 

1. Dr. Ashok K. Singh Genetics ICAR-IARI 

2. Dr. Vinod Genetics ICAR-IARI 
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8. Dr. A.R. Rao Bioinformatics ICAR-IASRI 

9. Dr. R.C. Bhattacharya Molecular Biology & Biotechnology ICAR-NIPB 

10. Dr. K. Annapurna Microbiology 

Nodal officer, Grievance Redressal, CAAST 

ICAR-IARI 

11. Dr. R. Roy Burman Agricultural Extension 

Nodal officer, Equity Action Plan, CAAST 

ICAR-IARI 

12. Dr. K.M. Manjaiah Soil Science & Agri. Chemistry 

Nodal officer, CAAST 

ICAR-IARI 

13. Dr.Viswanathan Chinnusamy Plant Physiology 

PI, CAAST 

ICAR-IARI 
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Foreword 

The Division of Agricultural Economics, a constituent of the School of Social Sciences of ICAR-

Indian Agricultural Research Institute, was established in 1960. The mandate of the Division 

is to conduct research in frontier areas and serve as a centre for academic excellence in post-

graduate education. Since its inception, the Division has been making contributions in basic 

and applied research with significant implications for agricultural policy. The Division has 

achieved excellence in post-graduate education and research as an ICAR-UNDP Centre of 

Excellence through a faculty exchange program for human resources development and 

strengthening of infrastructure facilities. Since 1995 it has been functioning as an ICAR Centre 

of Advanced Faculty Training (CAFT) to strengthen the capacity for agricultural economics and 

policy research in the national agricultural research system.  

The research contributions of the Division have been globally recognized and many of the 

alumni occupy positions of repute in national and international organizations. The Division 

has maintained good academic liaison with other divisions at IARI, and other national and 

international agricultural research institutions. The research focus of the Division has been 

continuously reoriented to address contemporary development challenges. Current research 

thrust areas of the division include investment in agriculture, inclusive growth, and poverty 

alleviation, the impact of agricultural technologies and policies, price forecasting and market 

outlooks, natural resource use in agriculture and ecosystem services, climate change effects, 

mitigation and adaptations, and food and nutritional security.  

The Division has been in the forefront on the use of the latest research methods and analytical 

tools in its research activities that ensures quality research and reliable estimates. Considering 

this strength of the Division in forecasting techniques, a 10 days online training course on 

“Time Series Techniques for Forecasting in Agriculture” was organized by the Division from 

1 to 10 December 2021. The objective of this training program, sponsored by the Centre for 

Advanced Agricultural Science and Technology (CAAST) component of the World Bank-funded 

National Agricultural Higher Education Project (NAHEP), was to upgrade the research skills of 

the students of social science discipline. The training program covers a range of topics 

including web resources and research data management, introduction to R and stata 

softwares, extraction of large datasets, commodity outlook modelling, application of remote 

sensing and GIS data in research, univariate and multi-equation time series models, futures 

trading, Artificial Intelligence (AI), machine learning and LSTM techniques for price forecasting 

etc.  I am sure that the lectures on various forecasting techniques and practical sessions will 

be of immense help to the participants. 

.  

 

 Rashmi Aggarwal 

                                                                                                                                                               Dean and Joint Director(Edn) 
   ICAR-IARI,New Delhi 

                              Date: 10 .12.2021         
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Preface 

Evidence based social science research is of great importance as it provides for framing 

policies, estimating impacts and accurate forecasting. It employs robust qualitative and 

quantitative methods for obtaining reliable estimates. The recent advancements in the 

methodology and analytical techniques, as well as their applications in the field of social 

sciences, necessitates the students to get updated on these techniques so as to deliver quality 

reaserch. This training manual is prepared with the aim of guiding the post-graduate students 

of social sciences to employ these techniques effectively. The manual is based on the NAHEP-

CAAST sponsored online short training course titled “Time Series Techniques for Forecasting 

in Agriculture” organized by the Division of Agricultural Economics, ICAR-Indian Agricultural 

Research Institute, New Delhi. Centre for Advanced Agricultural Science and Technology 

(CAAST) is a new initiative and student-centric sub-component of World Bank sponsored 

National Agricultural Higher Education Project (NAHEP), granted to IARI to provide a platform 

for strengthening education and research activities of post-graduate students. 

Social science research, particularly in the applied disciplines of Agricultural Economics, 
Agricultural Extension and Agricultural Statistics, is characterised by a diversity of theoretical 
perspectives, substantive orientation, methodological strategies, data collection practices 
and analytical techniques. The students of these disciplines usually have to face challenges in 
research, since it involves conceptualizing the problems relevant to the stakeholders, 
collecting and handling large data sets (both primary as well as secondary), choosing 
appropriate methodology (qualitative and quantitative), executing the analysis using 
appropriate statistical packages, and interpreting and presenting the results in a meaning and 
useful format to all: farmers, academia and policymakers.  

Recognizing the need for imparting the essential research skills to the social science students, 

we have taken up the task of conducting the training and preparing this manual on- Time 

Series Techniques for Forecasting in Agriculture. The various chapters of this manual are 

contributed by the eminent social scientists of the country, with expertise in forecasting using 

different methods. In addition to the basic research methods, the manual also covers topics 

like web resources and research data management, introduction to R and stata softwares, 

extraction of large datasets, commodity outlook modelling, application of remote sensing and 

GIS data in research,univariate and multi-equation time series models, futures trading, 

Artificial Intelligence (AI),  machine learning and LSTM techniques for price forecasting  etc. 

We take this opportunity to sincerely acknowledge the contribution of all the authors in the 

preparation of this manual. This manual can act as a quick and effective reference source for 

the students in their future research endeavours especially in the area of forecasting.                                                                                 

                                                  Alka Singh 

Girish K Jha 

 Nithyashree M L 

Asha Devi S S 

                          Date: 10.12.2021  
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Introduction to R Software 

A. Dhandapani 

National Academy of Agricultural Research Management, Rajendranagar, Hyderabad 

dhandapani@naarm.org.in 

Introduction 
 

R is a statistical computing environment having facilities for data manipulation, calculation, 

graphical display etc. R is also a free implementation of S language, which was developed for 

statistical computing and graphics by John Chambers of Bell Labs. A commercial version of S 

is also available as S+® from Insightful Co. R was developed initially by Ross Ihaka and 

Robert Gentleman. R is developed as open source software and available free for use.  

 

Installation of R 
 

R package can be downloaded from the R project site, www.r-project.org . The current version 

is 2.15.0. R is also available for wide variety of operating systems such as Microsoft 

®Windows®, Mac OS X and Unix X11 (Linux). There are several additional packages 

available which can also be downloaded for free. 

 

To install R package in MS-Windows ® platform, download the latest version of R from the 

following location: http://cran.r-project.org/bin/windows/base/. The file is called R-2.15.0-

win.exe (~48 MB). Run this file and follow the instruction in the screen to install it. To run the 

software, go to Start → Programs → R→R-2.15.0 and click. The default R screen should 

appear with the title R GUI/R console with a > symbol in Red colour and red blinking cursor. 

Interaction with R software can be carried out with this command prompt.  

 

Getting Help 
 

Complete help files in HTML and PDF forms are available. There is an excellent introduction 

to R package can be found in Help → Manuals (in pdf) “A introduction to R”. Several other 

documentations are also given at the end of this lecture note. To get help on a particular 

command/function etc., type help (command name). For example, to get help on function 

‘mean’, type in the command prompt(>) 

 

>help(mean) 

 

This will open the help file with the page containing the description of the function mean. In 

this lecture note, all R commands and corresponding outputs are given as shaded text to 

differentiate the normal texts. It should be noted that R is case-sensitive, i.e. typing Help(mean), 

would get an error message,  

 

> Help(mean) 

Error: could not find function "Help" 

> 

 

Packages 

The strength of R comes from the optional packages available (again freely). The complete list 

is available at R-Project website. Packages can be installed either by using the Install Package 

option within R or download the packages from R-Project website and using the option, install 

http://www.r-project.org/
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from local Zip files. Packages are to be loaded before using through Load Package option. For 

more details, refer R Help system. 
 

Using R  

 

R can also be used as a calculator. For example, 

 

> 2+(3*2) 

[1] 8 

 

To compute, say roots of the equation, 2 3 2x x− + , the following commands can be used: 

 

> (3+sqrt(-3*-3-(4*1*2)))/(2*1) 

[1] 2 

> (3-sqrt(-3*-3-(4*1*2)))/(2*1) 

 [1] 1 

 

In the above example, a built-in function sqrt() is used to evaluate the square root of a number. 

Try to compute the square root of a negative number,  

 

> sqrt(-4) 

[1] NaN 

Warning message: 

In sqrt(-4) : NaNs produced 

 

R produces a warning message saying that the result is not a number (NaN). 

 

Workspace and History 

 

To exist R at the end, type q(). A warning message will be displayed, whether to save the 

workspace or not. If workspace is saved, R remembers all the objects/variables etc used 

/created during the particular session. The saved workspace can be loaded into R next time and 

one can continue working. Thus, one need not recreate again all the objects/variables. Also, the 

commands entered during a session can be saved as history. This will be useful to store all the 

relevant commands to run a particular problem in a file and can be run directly with out typing 

the commands again and again.  

 

Data Types 

 

Vector 

In any programming environment, the foremost thing is to learn the various data types 

supported. Also, in statistics, data comes in various forms such as numeric, categorical, 

multivariate, time series etc. R supports various data types such as numeric vectors/matrices; 

character vectors; categorical, logical etc. Simplest structure is a numeric vector, which stores 

ordered collection of numbers of any specific dimension. To begin with, create a vector, say a 

with 4 entries 1,0,-1 & 3, i.e.  

( )1 0 1 3 = −a , in R use 

 

a<-c(1,0,-1,3) 

a 
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Output: 

[1]  1  0 -1  3 

 

In this example, a new notation is introduced, namely “<-”(< sign followed by -). The 

statement is an assignment statement using a function c(). The assignment symbol is <- rather 

than the usual “=”. The function c() can take arbitrary number of arguments whose values are 

used to create the vector in this case. If an expression is typed with out assigning to any variable, 

then its value is printed. For example, type  

 

-a 

 

Output: 

[1] -1  0  1 -3 

 

On the other hand, type 

 

b<- -a 

b 

 

Output: 

[1] -1  0  1 -3 

Now, b is also a vector. 

 

Further, the following statement,  

 

c<- c(a, -a, b,1,2) 

c 

 

Output: 

[1]  1  0 -1  3 -1  0  1 -3 -1  0  1 -3  1  2 

 

produces a vector c of dimension 14. 

 

The other data types such as frame is discussed in “Reading Data” section. 

 

Functions in R 

 

R provides commonly used functions in mathematical and statistical world, such as 

trigonometric, mean, median etc. More over, several special functions are available. In R, the 

same function can be used for more than one purpose and may have arbitrary number of 

arguments. Some functions may have default arguments which need not be specified. For 

example, a simple call to the function mean with a vector, produces the average of the 

arguments of the vector. To get trimmed mean (i.e. discard 5 per cent values both the sides) 

use an extra parameter with value, trim =0.05. If trim is not specified, it is taken as 0 (default 

value). The function mean also has another argument, called na.rm which is a logical value, 

taking either true or false. This argument specifies whether the values which are marked as 

“Not Available” to be taken into consideration while computing averages or not (rm stands for 

remove). By default, it is set to be fault. Hence, it is important to understand different arguments 
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of the functions and their roles before using them. However, most of the time, the default values 

are only required. 

 

Reading Data 

 

The data given in Example 1 will be used here. The 4 parameters can be read into R as 

4 vectors say NrFruits, FruitWt, SeedYld, SeedlingLen using the following commands: 

(Note: For brevity, only few values are included. In actual code, include all the values) 

 

NrFruits <- c(7.0,7.0,,…., 7.0,7.3) 

FruitWt <- c(1.85,1.86, …., 2.45,2.44) 

SeedYld <- c(147.70, 136.86,….199.87,214.30) 

SeedlingLen <- c(16.86,16.77,….,19.31,19.36) 

 

Once the 4 vectors are created, it can be used in several ways. Now, to get a 1st item in NrFruits 

and all except say 3rd item, use the following commands: 

 

NrFruits[1] 

NrFruits[-3] 

 

To view items 1 to 5, use: 

 

NrFruits[1:5] 

 

For the Group column, one can use c() function by specifying all the 20 values. But, this can 

be easily generated using “:” notation and rep() function such as: 

 

Group <- rep(1:2,each=10) 

  

The statement rep(1:2,each=10) repeats the values 1 and 2 for ten times to form the Group 

Vector. 

 

All the variables NrFruits, FruitWt, SeedYld, SeedlingLen and Group can be made as one 

single variable using cbind() function: 

 

FruitData<-cbind (Group, NrFruits, FruitWt, SeedYld, SeedlingLen) 

FruitData 

 

The part of the output is shown below: 

 

     Group NrFruits FruitWt SeedYld SeedlingLen 

 [1,]     1      7.0    1.85  147.70       16.86 

 [2,]     1      7.0    1.86  136.86       16.77 

 [3,]     1      6.0    1.83  149.97       16.35 

 [4,]     1      7.0    1.89  172.33       18.26 

 [5,]     1      7.0    1.80  144.46       17.90 

            

Reading from files 

Though, the function c() can be easy to assign a data, it would be difficult to enter data in that 

way for even a small number of observations. It is possible to read from different data sources 
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such as simple text files, comma separated files etc to sophisticated data sources such as 

databases, excel files, web etc. To start with, to read from a simple text file, say, data.txt in 

which the columns are separated by a comma and the first line contains the names of the 

variables. 

 

Fruitdata− read.table (“data.txt”,header=TRUE, sep= “,”) 

 

This assumes that data.txt is in the current path. Otherwise you have to issue the full path where 

data.txt is stored. For example, to read data.text from the folder, “C:\Users\user\Documents\R 

Lecture” in Windows machines, use the following command: 

 

FruitData<-read.table("C://Users/user/Documents/R Lecture/data.txt",  

header=TRUE,sep= “,”) 

 

The syntax is very simple, as it uses a function read.table; the first argument is the name of the 

file, the second argument says that there is a header (the first line of the file) and the values are 

separated by a comma.  

 

Data Frames 

The function read.table returns the results to a Data Frame. A Data Frame in R is nothing but 

a collection of columns of equal length. Data frames are useful in many ways while doing any 

statistical analysis. For example, if you want to fit a linear regression between two variables, it 

is better to build a data frame consisting of dependent as well as independent variables in a 

single data frame. Individual columns are not directly accessible by their names. For example, 

the column Group in FruitData can be accessible using: 

 

FruitData$Group 

 

Reading from Excel 

 

The recommended options for reading data from MS-Excel are first save the file either as TAB-

delimited or CSV (Comma Separated Values)  and use read.table() function. This will make 

sure that the data is read properly. It is also possible to read from MS-Excel files directly using 

ODBC or using R package, xlsReadWrite.  

 

Descriptive Statistics using R 

 

The descriptive statistics such as mean, median, etc. can be easily calculated in R. Using the 

data frame, FruitData, consider the following R statements: 

 

#Descriptive Statistics 

#Print Mean of NrFruits 

mean(FruitData$NrFruits) 

# Print Median of NrFruits 

median(FruitData$NrFruits) 

#use of attach to make every column available directly 

attach(FruitData) 

#find Mean of Number of Fruits 

mean(NrFruits) 
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Some of the other functions which can calculate descriptive statistics are mean(), median(), 

max(), min, sd(),var() etc. The following table provides R syntax for various descriptive 

statistics. 

 

Name of the Statistics R Function Usage 

Mean mean() mean(NrFruits) 

Median median() median(NrFruits) 

Quartiles quantile() quantile(NrFruits) 

Percentiles quantile() quantile(NrFruits,c(0.01,0.30)) 

To get 1 and 30 percentiles 

Standard Deviation sd() sd(NrFruits) 

Variance var() variance(NrFruits) 

Range max() – min() max(NrFruits) – 

min(NrFruits) 

Inter Quartile Range IQR() IQR(NrFruits) 

Skewness skewness() skewness(NrFruits) 

Kurtosis kurtosis() kurtosis(NrFruits) 

 

Function tapply() 

 

Most of the time, one would like to calculate descriptive statistics for several columns together. 

Moreover, consider the calculation of mean of Number of Fruits for the 2 groups. The two 

group means can be calculated by the following two statements: 

 

mean(NrFruits[Group==1]) 

mean(NrFruits[Group==2]) 

 

In case, if the number of groups is large, clearly the above approach would be time consuming. 

In such cases, one can use tapply() function. To use this function, three arguments may be 

specified: (i) the variable (column) name for which some summary statistics is to be calculated; 

(ii) the grouping variable and (iii) summary function. Thus, to get the same result as that of the 

above two R statements, use: 

 

tapply(NrFruits,Group,mean) 
 

Summary Function 

 

The function, summary(<variable name/dataframe name>) provides the following information 

for the variable(s): mean, minimum, maximum, Median and 1st and 3rd quartiles. 

 

Plotting the Data 

 

Before starting of any statistical analysis, it is usually advised to create different types of plots 

to understand the data. For example, before proceeding to find out the correlation or fit a 

regression model between two variables, scatter plots may be produced to know the 

relationship between the variables. In R, several functions are available to produce several plots 

such as Histogram, Box Plot, XY Plot etc. It is also possible to produce graphs for several 

variables or same graph for each group etc. in one single panel.  
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Histograms 

 

Histograms show the frequency distribution of a quantitative variable as vertical bars with area 

of the bar denotes the frequency of items found in each class interval. Histograms are useful to 

assess the distribution of the variable. To generate a histogram, hist() function is used in R. For 

example, to shown histogram of Number of Fruits (NrFruits), use the following code: 

 

hist(NrFruits) 

 

To produce a histogram with a single color or with different colours, use the following syntax: 

 

hist(NrFruits,col = “red” ) 

multi<- c("blue","red","brown","yellow") 

hist(NrFruits,col=multi) 

 

To produce a normal curve within the histogram, use the following code: 

 

h<-hist(NrFruits,col="red") 

x<-seq(min(NrFruits),max(NrFruits),length=50) 

y<-dnorm(x,mean=mean(NrFruits),sd=sd(NrFruits)) 

y<-y*diff(h$mids[1:2])*length(NrFruits) 

lines(x,y,col="blue",lwd=4) 

 

Box Plots 

 

Box plots are useful to show multiple descriptive statistics of a variable in a single graph. The 

box plots, also called Box and Whisker plots, can be used for comparing different groups. To 

produce box plot, use boxplot() function in R. 

 

boxplot(NrFruits) 

 

To produce a box plot for two groups together, use 

 

boxplot(NrFruits~Group) 

 

In R, various functions/methods are available to carry out various statistical analyses, such as 

ANOVA, MANOVA, Principal Components, Time Series Analysis etc. For a complete details 

of each of the method, can be obtained from R-Reference Manual supplied with the R package. 

For illustration few examples are provided. 

 

T-test 

 In example 1, if the interests are to: 

1. Test whether the mean of the population of Seed yield/plant (g) is 200 or not. 

2. Test whether the natural pollination and hand pollination under open field conditions 

are equally effective or are significantly different. 

To answer the question 1 of the example, enter the following R command: 

 

t.test(SeedYld,mu=200) 
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The output is shown below: 

 

        One Sample t-test 

 

data:  SeedYld  

t = -2.3009, df = 19, p-value = 0.03289 

alternative hypothesis: true mean is not equal to 200  

95 percent confidence interval: 

 163.3414 198.2656  

sample estimates: 

mean of x  

 180.8035 

 

Similarly, for the question 2 of the example, the relevant R statements are: 

 

t.test(NrFruits[Group==1],NrFruits[Group==2]) 

t.test(FruitWt[Group==1], FruitWt [Group==2]) 

t.test(SeedYld [Group==1], SeedYld [Group==2]) 

t.test(SeedlingLen [Group==1], SeedlingLen [Group==2]) 

 

The general syntax of t-test in R is as follows: 

 

t.test (x,….) 

The arguments (only few are given, for complete list, see R documentation) of t.test are as 

follows: 

 

x(required) A non-empty numeric vector of data values 

Optional arguments 

Y A non-empty numeric vector of data values; required for 

two-sample t-test 

Alternative Takes the following values: “two.sided”, “greater” and 

“less”. The default value is “two.sided” 

Mu Default value is zero. Specify true value of the mean to be 

tested in case of single sample t-test and difference in 

means to be tested in case of in case of two sample t-test. 

Paired Logical value (TRUE/FALSE). TRUE for paired t-test 

var.equal Logical value (TRUE/FALSE). If TRUE, variances of two 

samples are assumed to be equal and pooled variance is 

used for estimating the common variance. Otherwise 

Welsh approximation for d.f. is used. 

conf.level Confidence level of the interval 

  

It may be appreciated that even though there are of lot of arguments, only few are enough to 

run the command. 

 

Example dataset 

 

The following example for t-test is available at Design Resource Server of IASRI. 

(http://www.iasri.res.in/design/Analysis%20of%20data/ttest1.html) 

http://www.iasri.res.in/design/Analysis%20of%20data/ttest1.html
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Example: An experiment was conducted to study the hybrid seed production of bottle 

gourd (Lagenaria siceraria (Mol) Standl) Cv. Pusa hybrid-3 under open field conditions during 

Kharif-2005 at Indian Agricultural Research Institute, New Delhi. The main aim of the 

investigation was to compare natural pollination and hand pollination under field conditions. 

The data were collected on 10 randomly selected plants from each of natural pollination and 

hand pollination. The data were collected on number of fruit set for the period of 45 days, fruit 

weight (kg), seed yield per plant (g) and seedling length (cm). The data obtained is as given 

below: {Here 1 denotes natural pollination and 2 denotes the hand pollination} 

Group 
No. of 

fruitSet(45days) 

Fruit weight 

(kg) 

Seed yield/plant 

(g) 

Seedling length 

(cm) 

1 7.0 1.85 147.70 16.86 

1 7.0 1.86 136.86 16.77 

1 6.0 1.83 149.97 16.35 

1 7.0 1.89 172.33 18.26 

1 7.0 1.80 144.46 17.90 

1 6.0 1.88 138.30 16.95 

1 7.0 1.89 150.58 18.15 

1 7.0 1.79 140.99 18.86 

1 6.0 1.85 140.57 18.39 

1 7.0 1.84 138.33 18.58 

2 6.3 2.58 224.26 18.18 

2 6.7 2.74 197.50 18.07 

2 7.3 2.58 230.34 19.07 

2 8.0 2.62 217.05 19.00 

2 8.0 2.68 233.84 18.00 

2 8.0 2.56 216.52 18.49 

2 7.7 2.34 211.93 17.45 

2 7.7 2.67 210.37 18.97 

2 7.0 2.45 199.87 19.31 

2 7.3 2.44 214.30 19.36 
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An Introduction to STATA  

This chapter describes an overview and basic commands used in the STATA software which 

will help the beginners to get familiar and hold a grip in using the software for further statistical 

analysis. Also, this chapter is aimed to introduce the different unit-level data sets available and 

the way of handling them. Those who don’t have access to STATA software can avail the 

short-term student license service by using the link Student short-term license request | Stata. 

As shown below the main interphase (Figure 1) of the STATA has a menu system that enables 

the users to perform the task by interactive UI; drop-down menu. Alternatively, there is also a 

command window with which users can write commands directly for the statistical analysis. 

For example, to summarize data, by typing summarize variable/variables name, we can get the 

result and one can also do it by using the drop-down menu by going to current statistics (Figure 

2). As a beginner one can start by exploring the possible option available by using the drop-

down menu, after getting comfortable with the software, can directly type the command to 

perform any required analysis which is more efficient and professional, apart from this the 

executed commands can be copied from the history/review window and saved in do file, which 

can be easily shared with other researchers and this enables single-click execution. With the 

right side of the interphase, variables, and properties window variables and their related 

properties including labelling the variables and assigning variables values can be performed 

and visualized.   

 STATA provides flexibility in exploring the various option to the users to learn the 

available functions and packages with the use of the help command. By using this command 

one can learn and use the applicability of different functions and packages. For example, by 

typing help summarize in the command window we get detailed information of the command 

summarize in the form of pdf also by scrolling down detailed information on using the 

summarize command directly as syntax as well as menu format along with some example data 

sets a shown below is a great source to learn STATA.   

 

 

mailto:nithya.econ@gmail.com
https://www.stata.com/customer-service/short-term-license/
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Figure 1. Main interphase of STATA 

 

 

 

 

 

Figure 2. Two ways of performing task in STATA  
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If the user is not sure about what to type in the command window, then the search option 

under the help in the menu bar can be explored. Besides there are many user-written commands 

are available in the STATA software in the form of packages, to use them first we need to 

install the packages. For this one can use findit command and after finding the suitable package 

install them to make use of those packages and also make sure your system connected to the 

internet while installing the packages.   
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It is always good practice to save the results of the analysis, that can be done in STATA by 

typing log using filename in the command window before beginning the analysis, which creates 

a log file by the given file name and after completing the analysis type log close and your 

analysis will be saved in the smcl format for example filename.smcl, which details all the 

activity which you carried out during the particular session or analysis. Which you may need 

at the later stage to communicate to the journals while submitting the research article. 

 

Mathematical and logical operator in STATA are similar to those used in MS excel  

a == b        if a equals b 

a != b         if a not equal to b 

a >  b         if a greater than b 

a >= b        if a greater than or equal to b 

a <  b         if a less than b 

a <= b        if a less than or equal to b 

a & b         & refers to and  

a | b            | refers to or 

 

Handling the data set 

 

1. Creating a new variable: gen or egen command is used to create the new variable. 

These commands can be combined with arithmetic operators or logical operators 

Example: gen grade=1 if marks==2 

                                   egen stdev_age= std(income) 

                     gen ln_wage = ln(wage) 

 

2. For labelling the variable: to create a label to the variable, write the command label 

variable and type the variable name need to be labelled then write the label with in the 

invited comma 

Example: label variable ln_wage "Log of hourly wage" 

 

3. The replace command: Replace command generally helps in editing value of already 

existing or generated variable, for this command replace can be used.  

Example: replace gender=0 if missing(gender)  
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     replace gender=0 if gender==. 

4. To sort the data in ascending order: use command sort variable name 

5. Command that can convert string to numeric variables: Tostring and destring 

 

Few Commands for Basic Statistical analysis 

 

a. Regression: reg or probit or logit 

 

b. Correlation: corr or pwcorr 

 

c. Student T test: ttest 

 

d. Factor analysis: factor 

 

e. Marginal Effects after probit or logit: mfx 

 

f. Chisquare test: tab, all 

 

g. Principal Component Analysis: PCA 

 

Few useful user written commands 

 

h. tatable2: Calculate group wise mean value and test the significance 

 

i. orth_out: Perform t-test for any number of variables at once 

 

j. dea: Data envelopment analysis 

 

k. acfest: Production function est. using Ackerberg-Caves-Frazer method 

 

l. levpet: Production function est. using Levinsohn and Petrin approach 

 

m. doubleb: Perform Double Bound Contingent Valuation. 

 

n. clustersampsi: perform power calculations for RCT 

 

Exercise- 1 
 

1. Import the dataset “stata_intro”, which has been shared with you already.  

2. Summarize the data so that you see the means, standard deviation, min, and 

max of each variable 

3. generate the logarithmic transformation of the variable wage as ln_wage  

4. label variable ln_wage, wage, collgrad and union as Log of hourly wage, Hourly 

wage, College graduate and Union member respectively.  

5. define label values for the variable collgrad 
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6. encode racecat as race  

7. obtain mean wage sd wage for the variable union 

9.   draw histogram for the variable ln_wage and superimpose normal curve 

10.  generate scatter plot for the variables wage tenure 

11.       generate scatter plot for the variables wage tenure by union  

12.  obtain a liner regression equation of ln_wage and tenure 

13.  obtain a liner regression equation ln_wage and tenure along with by considering 

any one of the categorical variable and also an interaction component  

14.       save the commands in do file and results in log file.  

 

Extraction and handling of unit-level data 

As a beginner before getting the hands-on unit-level data, it is important to go through the key 

indicators or summary results. This helps to understand the purpose of the survey and the data 

coverage in the particular dataset. Besides, this will also help the user to comprehend the 

sample size, sampling design and estimation procedure which is necessary for further analysis 

and interpretation of the results. Since the key indicators/summary results, by and large, 

provides the aggregate estimate, the use of unit-level data enables the researchers to work with 

the basic unit of survey i.e. household in case of agriculture and firm with regard to the industry 

sector. The unit-level data sets are generally available in text format, to convert these files into 

a usable format, some of the steps need to be understood and they are discussed by using two 

unit-level datasets viz., Key Indicators of Situation of Agricultural Households in India of 

National Sample Survey Organization (NSSO) and Annual Survey of Industries (ASI). For 

handling any unit-level data it is essential to use suitable statistical software, here we use 

STATA (version 15) software for the illustration and the summary of the steps to be followed 

is shown in Figure 1.   

 The first and most important step in using unit-level data is to get a though 

understanding of the supporting documents they mainly comprise the layout which instructs, 

how the data arranges in the text file and other details such as tabulation programme, code list, 

concept and definition and schedule, etc. For extracting data from the text file one has to  
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Figure 1. Steps to extract and handle the unit-level data 

 

write the commands in STATA by using the information given in the layout. For example, for 

the NSSO data set it can be written as:  

 

where the command infix is written to extract the text file into STATA file and at the end data 

path has been specified. Similarly, for the ASI data it can be written as: 

 

After extracting the data files, it is important to create the common ID or unique ID in each 

data file. This will help to identify the household across the different data sets and also enables 

to combine the information available in different data files. For creating a common id, the 

following command in STATA is written as: 
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To combine the information of different data files, the researcher has to ensure that the 

observations are uniquely identified across the data sets, if not the data needs to be rearranged. 

By observing the data structure, it can be grouped as wide-format or long format. For example, 

in Figure 2, students’ ids and results are written in the wide-format in Table 1 and the same 

students' subject-wise grades are arranged in the long format in Table 2. To combine the 

information of grade and results, Table 2 has to be reshaped/rearranged into a wide format, 

which can be done by using the command reshape in STATA i.e. reshape wide Grade, i (ID) 

j(J).  

 

Figure 2. Visualization of wide and long format data  

 

Similarly, to the unit-level data set command can be written as: 

 

In the next step, data files can be merged by using the common ID with the merge option one-

to-one on key variable, as shown below 
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Based on the need for interpretation, multiplier options can be further explored by using the 

help command as shown below. 
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The detailed syntax for the ASI survey is given below keeping students in mind, which will be 

to practice reshaping and merging. 

 

 

 

      Total      393,959      100.00

                                                

         10       55,727       14.15      100.00

          9        9,008        2.29       85.85

          8       54,993       13.96       83.57

          7       51,758       13.14       69.61

          6        3,532        0.90       56.47

          5       40,209       10.21       55.57

          4       42,085       10.68       45.37

          3       52,954       13.44       34.69

          2       46,763       11.87       21.24

          1       36,930        9.37        9.37

                                                

       S.no        Freq.     Percent        Cum.

. tab S_no

. drop Year

. use "F:\MOSPI_ASI_UNIT\2015-16\Data\blkC201516.dta"

file F:\MOSPI_ASI_UNIT\2015-16\Data\B.dta saved

. save "F:\MOSPI_ASI_UNIT\2015-16\Data\B.dta"

 opened on:  21 Oct 2019, 12:54:11

  log type:  smcl

       log:  F:\MOSPI_ASI_UNIT\2015-16\Data\M_1516.smcl

      name:  <unnamed>
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\  

 

 

 

file F:\MOSPI_ASI_UNIT\2015-16\Data\C.dta saved

. save "F:\MOSPI_ASI_UNIT\2015-16\Data\C.dta"

                                                                             

                                    NVC   ->   NVC1 NVC2 ... NVC10

                                  N_V_O   ->   N_V_O1 N_V_O2 ... N_V_O10

>  ... Depuptoyearend10

                         Depuptoyearend   ->   Depuptoyearend1 Depuptoyearend2

> .. Depadjustment10

                          Depadjustment   ->   Depadjustment1 Depadjustment2 .

> videduringtheyear2 ... Depprovideduringtheyear10

                Depprovideduringtheyear   ->   Depprovideduringtheyear1 Deppro

> ing2 ... Depuotobeginning10

                       Depuotobeginning   ->   Depuotobeginning1 Depuotobeginn

>  G_Valueclose10

                           G_Valueclose   ->   G_Valueclose1 G_Valueclose2 ...

> .. G_Valuedepadj10

                          G_Valuedepadj   ->   G_Valuedepadj1 G_Valuedepadj2 .

> ctualaddition2 ... G_ValueActualaddition10

                  G_ValueActualaddition   ->   G_ValueActualaddition1 G_ValueA

>  Gross_ValueaddduetoRevaluation2 ... Gross_ValueaddduetoRevaluation10

         Gross_ValueaddduetoRevaluation   ->   Gross_ValueaddduetoRevaluation1

> ening2 ... GrossValueOpening10

                      GrossValueOpening   ->   GrossValueOpening1 GrossValueOp

xij variables:

j variable (10 values)             S_no   ->   (dropped)

Number of variables                  14   ->     112

Number of obs.                   393959   ->   55727

                                                                             

Data                               long   ->   wide

(note: j = 1 2 3 4 5 6 7 8 9 10)

> Depadjustment Depuptoyearend N_V_O NVC , i( DSL ) j( S_no )

> ddition G_Valuedepadj G_Valueclose Depuotobeginning Depprovideduringtheyear 

. reshape wide GrossValueOpening Gross_ValueaddduetoRevaluation G_ValueActuala

      Total      696,532      100.00

                                                

         17       38,157        5.48      100.00

         16       54,031        7.76       94.52

         15       51,354        7.37       86.76

         14       48,651        6.98       79.39

         13       29,978        4.30       72.41

         12       47,454        6.81       68.10

         11       54,010        7.75       61.29

         10       47,374        6.80       53.54

          9       48,309        6.94       46.73

          8       53,187        7.64       39.80

          7       48,998        7.03       32.16

          6       34,421        4.94       25.13

          5       21,202        3.04       20.19

          4       46,962        6.74       17.14

          3       21,317        3.06       10.40

          2        7,693        1.10        7.34

          1       43,434        6.24        6.24

                                                

       S.No        Freq.     Percent        Cum.

. tab S_No

. drop Year

. use "F:\MOSPI_ASI_UNIT\2015-16\Data\blkD201516.dta"
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file F:\MOSPI_ASI_UNIT\2015-16\Data\D.dta saved

. save "F:\MOSPI_ASI_UNIT\2015-16\Data\D.dta"

                                                                             

> ngRs17

                              ClosingRs   ->   ClosingRs1 ClosingRs2 ... Closi

> ngRs17

                              OpenungRs   ->   OpenungRs1 OpenungRs2 ... Openu

xij variables:

j variable (17 values)             S_No   ->   (dropped)

Number of variables                   5   ->      36

Number of obs.                   696532   ->   54047

                                                                             

Data                               long   ->   wide

(note: j = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17)

. reshape wide OpenungRs ClosingRs , i( DSL ) j( S_No )

                                                                             

> s2 ... WagessalariesRs9

                        WagessalariesRs   ->   WagessalariesRs1 WagessalariesR

> d2 ... NoofMandayspaid9

                        NoofMandayspaid   ->   NoofMandayspaid1 NoofMandayspai

> ersonwork2 ... AveNumberPersonwork9

                    AveNumberPersonwork   ->   AveNumberPersonwork1 AveNumberP

> edTotal2 ... MandaysWorkedTotal9

                     MandaysWorkedTotal   ->   MandaysWorkedTotal1 MandaysWork

> orkedNonManuf2 ... MandaysWorkedNonManuf9

                  MandaysWorkedNonManuf   ->   MandaysWorkedNonManuf1 MandaysW

> edManuf2 ... MandaysWorkedManuf9

                     MandaysWorkedManuf   ->   MandaysWorkedManuf1 MandaysWork

xij variables:

j variable (9 values)              S_No   ->   (dropped)

Number of variables                   9   ->      56

Number of obs.                   338475   ->   54346

                                                                             

Data                               long   ->   wide

(note: j = 1 2 3 4 5 6 7 8 9)

> NumberPersonwork NoofMandayspaid WagessalariesRs , i( DSL ) j( S_No )

. reshape wide MandaysWorkedManuf MandaysWorkedNonManuf MandaysWorkedTotal Ave

. drop Year

. br

. use "F:\MOSPI_ASI_UNIT\2015-16\Data\blkE201516.dta"
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>  Rate_PerUnit133

                           Rate_PerUnit   ->   Rate_PerUnit1 Rate_PerUnit2 ...

>  ... Purchase_Value133

                         Purchase_Value   ->   Purchase_Value1 Purchase_Value2

> 3

                                QtyCons   ->   QtyCons1 QtyCons2 ... QtyCons13

> ty_code2 ... Unit_Quantity_code133

                     Unit_Quantity_code   ->   Unit_Quantity_code1 Unit_Quanti

> e133

                               ItemCode   ->   ItemCode1 ItemCode2 ... ItemCod

xij variables:

j variable (133 values)             Sno   ->   (dropped)

Number of variables                   9   ->     668

Number of obs.                   541009   ->   53406

                                                                             

Data                               long   ->   wide

>  121 122 123 124 125 126 127 128 129 130 131 132 133)

>  102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

> 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

>  52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 

> 6 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

(note: j = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 2

>  , i( DSL ) j( Sno )

. reshape wide ItemCode Unit_Quantity_code QtyCons Purchase_Value Rate_PerUnit

                                                                             

> unit39

                              R_Perunit   ->   R_Perunit1 R_Perunit2 ... R_Per

> alue39

                              Pur_value   ->   Pur_value1 Pur_value2 ... Pur_v

                                QtyCons   ->   QtyCons1 QtyCons2 ... QtyCons39

> y39

                               Unit_Qty   ->   Unit_Qty1 Unit_Qty2 ... Unit_Qt

> e39

                               ItemCode   ->   ItemCode1 ItemCode2 ... ItemCod

xij variables:

j variable (39 values)              Sno   ->   (dropped)

Number of variables                   8   ->     197

Number of obs.                    29442   ->    8763

                                                                             

Data                               long   ->   wide

> 6 27 28 29 30 31 32 33 34 35 36 37 38 39)

(note: j = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 2

>  )

. reshape wide ItemCode Unit_Qty QtyCons Pur_value R_Perunit , i( DSL ) j( Sno
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 closed on:  21 Oct 2019, 13:01:11

  log type:  smcl

       log:  F:\MOSPI_ASI_UNIT\2015-16\Data\M_1516.smcl

      name:  <unnamed>

. log close

file F:\MOSPI_ASI_UNIT\2015-16\Data\J.dta saved

. save "F:\MOSPI_ASI_UNIT\2015-16\Data\J.dta"

                                                                             

> put2 ... Ex_FactvalOutput39

                       Ex_FactvalOutput   ->   Ex_FactvalOutput1 Ex_FactvalOut

> t_Netsale_value2 ... Per_unit_Netsale_value39

                 Per_unit_Netsale_value   ->   Per_unit_Netsale_value1 Per_uni

                                Subsidy   ->   Subsidy1 Subsidy2 ... Subsidy39

                                 Others   ->   Others1 Others2 ... Others39

>  Sales_taxVAT39

                           Sales_taxVAT   ->   Sales_taxVAT1 Sales_taxVAT2 ...

> xcise_duty39

                            Excise_duty   ->   Excise_duty1 Excise_duty2 ... E

> e2 ... Gross_salevalue39

                        Gross_salevalue   ->   Gross_salevalue1 Gross_salevalu

> d39

                               Qty_Sold   ->   Qty_Sold1 Qty_Sold2 ... Qty_Sol

> anuf39

                              Qty_Manuf   ->   Qty_Manuf1 Qty_Manuf2 ... Qty_M

> y39

                               Unit_Qty   ->   Unit_Qty1 Unit_Qty2 ... Unit_Qt

> code39

                              Item_code   ->   Item_code1 Item_code2 ... Item_

xij variables:

j variable (38 values)              Sno   ->   (dropped)

Number of variables                  15   ->     421

Number of obs.                   127906   ->   43768

                                                                             

Data                               long   ->   wide

> 7 28 29 30 31 32 33 34 35 36 37 38 39)

(note: j = 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18 19 20 21 22 23 24 25 26 2

> DSL ) j( Sno )

> ty Sales_taxVAT Others Subsidy Per_unit_Netsale_value Ex_FactvalOutput , i( 

. reshape wide Item_code Unit_Qty Qty_Manuf Qty_Sold Gross_salevalue Excise_du
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Agricultural Policy Analysis Using Commodity Outlook Models  

Commodity Outlook models are partial equilibrium models which have found innumerous 

applications in the context of economic policy analysis in agriculture. Such models are used 

under various contexts; agricultural commodity market outlook models  like IMPACT model of 

International Food Policy Research Institute (IFPRI), Rice outlook model of International Rice 

Research Institute (IRRI), World food model of Food and  Agricultural Organization (FAO) are 

typical partial equilibrium models with the primary  objective of generating short and medium 

term outlook of major food commodities. IMPACT model is a multipurpose model with the 

capability of simulating important policy variables under various alternative scenarios. Some 

other models like the World Agricultural Trade Simulation model (WATSim) of Food and 

Agricultural Policy Research Institute (FAPRI) is specifically designed to model international 

agricultural trade and related policy simulations. These models could be of different dimensions; 

some are multi-commodity multi region spatial models while some others are single commodity 

national models.  

Partial Equilibrium Models: Meaning and Definition 

A partial equilibrium is a type of economic equilibrium, wherein the clearance on the 

market of some specific goods is obtained independently from prices and quantities demanded 

and supplied in other markets. In other words, in such equilibrium, the prices of all substitutes 

and complements, as well as income levels of consumers are constant. Here, the dynamic 

process is such that prices adjust until supply equals demand. It is a powerfully simple technique 

that allows one to study equilibrium, efficiency and comparative statics. The stringency of the 

simplifying assumptions inherent in this approach make the model considerably more tractable, 

but may produce results which, while seemingly precise, do not effectively model real world 

economic phenomena1. In partial equilibrium analysis, the effects of policy actions are examined 

only in the markets that are directly affected. Supply and demand curves are used to depict the 

price effects of policies. Producer and consumer surplus is used to measure the welfare effects 

on participants in the market. A partial equilibrium analysis ignores effects on other industries 

in the economy or assumes that the sector in question is very, very small and therefore has little 

if any, impact on other sectors of the economy. 

Partial Equilibrium versus General Equilibrium 

While partial equilibrium analysis considers only a particular market or sector and the 

underlying demand and supply dynamics, general equilibrium seeks to explain the behavior of 

supply, demand and prices in a whole economy with several or many interacting markets, by 

seeking to prove that a set of prices exists that will result in an overall equilibrium. As with all 

                                                           
1 http://en.wikipedia.org 

mailto:pshinoj@gmail.com
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models, this is an abstraction from a real economy; it is proposed as being a useful model, both 

by considering equilibrium prices as long-term prices and by considering actual prices as 

deviations from equilibrium. General equilibrium theory both studies economies using the 

model of equilibrium pricing and seeks to determine in which circumstances the assumptions of 

general equilibrium will hold. The theory dates to the 1870s, particularly the work of French 

economist Léon Walras. The distinction between partial and general equilibrium models can be 

made in terms of (a) ceteris paribus assumptions and (b) the variables of interest that are 

endogenous. At one extreme is the typical model of a commodity market that takes the price and 

quantity of that commodity   as endogenous treating all of other goods as constant and exogenous 

to the analysis. A the other extreme, are the detailed economy-wide models in which all prices 

and  quantities  are  endogenous to, and measured in the analysis, so that the extreme mutatis 

mutandis (everything allowed to change) replaces extreme ceteris paribus. Most economic 

analyses fall somewhere in between these two extremes. Another way of distinguishing is in 

terms of techniques of analysis. For instance, when Marshallian supply-and-demand models 

are used, the analysis is typically regarded as being a partial equilibrium analysis, whereas 

when a social accounting matrix (SAM) is involved, it is regarded as general equilibrium 

analysis (Alston et al, 1998). 

 

Modeling approaches to Partial Equilibrium Analysis 

A partial equilibrium modeling problem can be approached from different angles based on the 

kind of modeling framework used for solving it. A simple partial equilibrium model could 

consist of linear equations of demand and supply specified by an equilibrium condition as 

illustrated below; 

Building the Model 

• Demand equation(behavioral equation): QD = a - bP (a, b  >0) 

• Supply equation(behavioral equation): QS = - c + dP (c, d >0) 

• Equilibrium Condition: QD = QS 

 

Method of finding equilibrium 

• Solution by eliminating variables 

 

Non-linear models with quadratic terms or higher degree polynomial terms can be used  to 

replace simple linear models when the situation demands detailed examination of the underlying 

market situation. Still, we have the specific condition for determining the existence of 

equilibrium with economic implications. In addition to algebraic approach, linear models can 

be solved using graphical approach also. 

Structure of a Typical Agricultural Policy Model 

A typical agricultural commodity outlook model under partial equilibrium framework 

consists of the following sub-components.  

1. Producer core system 

(i) Area equation 

(ii) Yield equation 

(iii) Production equation 
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(iv) Supply equation 

2. Consumer core system 

(i) Food demand equation 

(ii) Feed demand equation 

(iii) Other uses demand equation 

(iv) Total demand equation 

3. Trade core system 

(i) Export equation 

(ii) Import equation 

4. Price linkage equation 

5. Model closure 

The producer core system depicts the supply side of the commodity under question 

whereas the consumer core system depicts the demand side. Various demographic and conditional 

variables like research investment, irrigation, weather parameters like rainfall, temperature, other 

qualitative variables that determine the choice of consumers etc. can also be incorporated into 

both producer and consumer core systems as exogenous variables. The trade core system is 

inserted in the case of an open economy where the goods are traded outside the economy. The 

price linkage equations link the demand and supply sides with equilibrium conditions. In addition 

to this, a number of policy variables like tariffs, subsidies, and support prices can also be 

incorporated into these models exogenously to capture the effects of policy changes. The technical 

parameters of the various equations have to be estimated based on real data either time series, 

cross section or pooled. The accuracy of the model output would depend a great deal on how 

realistic these estimates are. With this basic structure, the model could have various sub-sectoral 

dimensions which can include crop sector, livestock sector, dairy sector, input sector and spatial 

dimensions that may vary from regional dimension, national dimension and global dimension 

depending upon the spatial coverage the modeler intends to incorporate. Both linear and non-

linear programming approaches can be applied to derive optimum feasible solutions and various 

algorithms are available for the purpose of solving such models. Various software packages like 

SAS, GAMS, Microsoft spread sheet, etc. are enabled with features to construct commodity 

outlook models and solve them using alternative iterative procedures.  

Commodity Outlook for Indian Agriculture: The case of Cereal Outlook Model 

 The Cereal Outlook Model was developed by the authors for generating commodity 

outlooks for three major cereals, viz., rice, wheat and maize in India. A detailed account of this 

model is available in Parappurathu, et al (2014a; 2014b).  The model was constructed under a 

dynamic as well as spatial partial equilibrium modeling framework that incorporate a system of 

simultaneous equations for effectively depicting the linkages between various economic variables 

in the balance sheet of major cereals in India. The Model takes cognizance of the key economic 

variables such as production, demand, stocks, trade, prices and policy variables related to the 

primary commodities. It has sought to generate medium-and long-term projections, given the past 

trends in behavior of the variables in question as well as magnitude of technical coefficients which 

govern their behavior. Technically, the Model derives equilibrium values of the variables based on 

the econometric linkages established through a set of equations that cuts across commodity as well 
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as spatial dimensions. It is an open model as it takes into account the trade flows of the commodities 

with respect to the rest of the world and the endogenous prices are attached to the world market 

prices. The Model is dynamic in the sense that the current prices and quantities are related to the 

past prices and quantities and the equilibrium is attained through a dynamic recursive iterative 

process that continuously adjusts the quantities and prices across time periods till the overall model 

converges to an equilibrium state. Spatial dimensions have been incorporated by specifying supply 

side equations separately for six regions in the country.  

Model Structure 

 The Cereal Outlook Model is a typical agricultural-related model that incorporates the 

major demand and supply side variables, output and input prices, as well as other exogenous 

variables like income and population; and  policy variables like support prices, tariffs, etc. A 

schematic representation of the linkages in the model is shown in Figure 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Modeling Framework of Cereal Outlook Model: An Illustration 

Source: Parappurathu et al (2014a) 

 

Broadly, the Model comprises of the following integral components: (i) a producer 

core system that integrates the linkages between area, yield, production, stock changes and 

supply of the individual grains; (ii) a consumer core system that includes the equations for 

food and other uses demand, feed demand and total demand; (iii) a trade core system that 

incorporates the export and import equations; (iv) a set of price linkages equations for 

depicting the relationships between producer prices with consumer prices and national and 
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regional prices; and (v) a model closure equation that links the various cores of the model 

with certain closure conditions.  

However, all such partial equilibrium models would be essentially bound by some basic economic 

assumptions like perfect competition, constant returns to scale etc. which can be relaxed to some 

extent depending upon circumstances. The utility of such models varies depending upon the way 

each of the sub-systems are modeled based on the discretion of the modeler and the purpose for 

which it is built; whether for forecasting, policy simulations or baseline situation assessment. 
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Food Security exists when all people at all times have physical, social and economic access to 

sufficient safe and nutritious food which meets their dietary needs and food preferences for an 

active and healthy life (FAO 2002).  Both demand and supply side factors are important for 

food Security. Three dimensions of food security are; 

I. Availability of food – This includes supply side factors such as 

production/imports/stock  

II. Accessibility – It means ensuring food within the reach of people. And it is determined 

by distribution factors 

III. Affordability – It means that the people may have sufficient purchasing power or the 

food may be affordable for the buyers. It is determined by demand side factors  

Food Insecurity may be a temporary/transient phenomenon or it may be persistent/regular in 

nature. 

Recent Policies and programmes for ensuring food security in India 

Demand side policies– 

• National Food Security Act / Public Distribution System (PDS, RPDS, TPDS)  

• Mid-Day Meal Scheme (MDM)  

• Integrated Child Development Scheme (ICDS)  

Supply side policies- 

• National Food Security Mission (NFSM)  

• Village Grain Bank Scheme  

• Rashtriya Krishi Vikas Yojana (RKVY)  

• Employment / Ensuring Purchasing Power  

• Food for Work Programme  

• Mahatma Gandhi National Rural Employment Guarantee Scheme 

Basic properties of a demand model: 

mailto:Pkumar@gids.org.in
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Adding-up: Budget shares sum to one, i.e., total expenditure must be exhausted among 

individual commodities 

Homogeneity condition: Demand functions are homogenous of degree zero in prices and 

income. 

Symmetry condition: Slutsky’s symmetry condition implies that the compensated cross price 

elasticities are equal. 

Negativity condition: Compensated demand curve is downward sloping or the substitution 

effect is always negative implying that the ‘law of demand’ holds. 

The Almost Ideal Demand System (AIDS) 

The AIDS model developed by Deaton and Muellbauer (1980) derive demand system by use 

of duality concepts, from a particular cost or expenditure function. The AIDS cost function is 

given by 

 

Where α0 ,αi , βi and γij, are parameters, u is utility and pj ’s are prices. AIDS model satisfies 

the axioms of choice exactly, and does not impose additive preferences and under certain 

conditions, allows consistent aggregation of individual demands to market demands. By 

applying Shepard’s Lemma, that is, by differentiating the cost function, after appropriate 

substitutions, we obtain the AIDS in budget share form 

 

Where P is price index defined by 

 

With the above price index, the system becomes non-linear and requires estimation of a large 

number of parameters that needs a long data series on budget shares, total expenditure and 

prices. Deaton and Muellbauer (1980a) used Stone Price Index to make the system linear by 

substituting ln P* = Σ wk ln pk ; where P ~= P* 

Parameter Restrictions 
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Adding up:       

 

Homogeneity: Σyij = 0;  

Symmetry: Yij = Yji  

The fourth restriction (concavity of the expenditure function) has no parametric representation. 

Demographic representation: 

Following Heien and Pompelli (1988), demographic effects are incorporated in the model by 

allowing the intercept to be a function of demographic variables as: 

 

Where dj is the j th demographic variable, the examples could be household size, region, 

gender, education level of household head, etc. 

Two Stage Budgeting 

A two-stage budgeting demand system: It is supposed that the consumers allocate their total 

budget in two stages. In the first stage, the consumer determines the allocation of his total 

expenditure between various commodity groupings, e.g., cereals, pulses, edible oils, milk-

meat, fruit-vegetables, other food items and non-food items. In the second stage, the 

expenditure is allocated among different groups, e.g., wheat, rice and coarse grains among the 

cereal group; fruit, vegetables and nuts among fruit-vegetables group and so on.LA/AIDS 

model used to estimate the two-stage budgeting demand function. 

Elasticity Formulation 

Income elasticity:  

 

Own-price and cross-price elasticities:  

 

Where  δrs  is Kronecker’s delta which is equal to unity for every s=r, and zero otherwise 
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Data required 

Consumption: All-India average monthly per capita consumer expenditure on food and non-

food commodities and the corresponding per capita total consumer expenditure (PCE), 

separately for rural and urban households. Unit level data of the National Sample Survey 

Organization (NSSO) for its 43rd to 68th rounds for ‘Household Consumption Expenditure’. 

The time period consists of a continuous time series beginning from 1987-88 (43rd round) up 

to 2011-12 (68th round). Model estimated at the aggregate and three population groups based 

on ranking by the level of PCE, viz., the poorest one fourth (bottom 25 percent), the middle 

half (middle 50 percent) and the upper one fourth (top 25 percent), separately for the rural and 

urban sector. 

Prices: The wholesale price indices published by the OEA. The price indices for the seven 

broad groups of items as well as for the individual items are prepared at the base year 2004-05. 

The price indices of all individual items for the whole time period (1987-88 to 2011-12) are 

first converted into 2004-05 prices (2004-05=100) through splicing. The individual items in 

the converted monthly price indices are matched with the items within each of the seven broad 

groups of the consumer expenditure to prepare wholesale price relatives in each group. The 

monthly wholesale price relatives in each group are then averaged over the months covered by 

a NSS round to obtain the average price relative for that round in each group. Using the 

expenditure weights for individual items in a broad group relative to the total expenditure on 

the broad group, separately for rural and urban areas, the price index relative for individual and 

broad group items are constructed for both rural and urban sectors. The expenditure weights 

are worked out on the basis of estimated average consumer expenditure on individual items in 

each group, separately for rural and urban areas using the NSS 62nd (2004-05) round consumer 

expenditure per capita data. 

Model Estimation 

The LA/AIDS model can be estimated using non-linear seemingly unrelated regression method 

without and with imposing restriction of homogeneity, adding-up and symmetry. The 

commodity combinations are: cereals - wheat, rice and coarse cereals; pulses edible oils milk - 

meat - milk and meat; fruits and vegetables - fruits, vegetables and dry-nuts; other food – sugar, 

spices, beverages and intoxicants non-food. 

Assumptions for Demand Projections 
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India’s decadal population growth rate - 1.64% PA (2001- 2011), projected growth 1.32% PA 

in 2011-2021 and 1.13% in 2021-2031. Urban share expected to increase from 31.1% in 2011 

to 39.1% in 2031. Contribution of rural sector in total GDP expected to come down from 47% 

in 2011-12 to 44% in 2020-21 and 40% by 2032-33. GDP growth during current year -4.5% 

and 6% during 2021-22 (World Bank/IMF). From 2022-23 to 2032-33 – Two scenarios (i) 6 

% and (ii) 8% per annum Corresponding PCI growth during 2022-23 onwards would be (i) 

4.87% and (ii) 6.87%. For current year it would be -5.8% and next year 4.73%. 

Demand Projections – Formula 

Qijt= qij0*Pjt*(1+ gjt* eij)
t 

Where Qijt is household demand for i th commodity for the j th sub group (rural or urban) during 

the tth time period; qij0 is the annual per capita quantity consumed of i th commodity by the j th 

sub group during the base year (2004-05); Pjt is the projected population of j th sub group in the 

year t; gjt is annual growth rate in per capita income for the j th sub group during the tth time 

period; and eij is the expenditure elasticity of the i th commodity for the j th sub group 

Estimation of Supply System: Simultaneous model 

 

 

Model Specification  

Area = f (Pi , Pj , Rain, Irrg, Fert, Trend, Lagged)  

Yield = f (Pi , Rain, Irrg, Fert, Trend, Lagged)  

Real FHPi = f (MSP, WP, Prod, WI, PD, Trend, Lagged)  

 Exports = f (Pi , WP, Prod, Open, PD, WT, WI, REER, Trend, Lagged)  
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Where, Pi is real domestic (farm harvest) price; Pj is real competing crop price; Rain is rainfall 

- annual, monsoon or winter months as applicable in different cases;  Irrg is percentage of area 

under irrigation, Fert is fertilizer use in kgs per hectare; Fertp is real fertilizer price; MSP is 

real minimum support price; WP is real world price or real unit value of exports; WI is real 

world income; PD is policy dummy;  Open is openness in terms of share of Indian exports in 

the world exports commodity wise; WT is volume of world trade in a particular commodity. 

REER is real effective exchange rate. 

Specification of Crops (group of crops) 

The specific crops are: rice, wheat, kharif and rabi coarse cereals, kharif and rabi pulses and 

kharif and rabi oilseeds.  

Crop sub-groups are:  

Kharif Coarse Cereals: Jowar, Bajra, Ragi and Maize; Rabi Coarse Cereals: Barley; Kharif 

Pulses: Tur, Moong, Urad; Rabi Pulses: Gram and Masoor (Lentil); Kharif Oilseeds: 

Groundnut, Soyabeans, Sunflower, Sesamum, Nigerseed; Rabi Oilseeds: Rapeseed & Mustard, 

Safflower and Linseed 

Assumptions for Supply Projections Growth trends of determinants (up to 2020) 

 

 



                                                           Time Series Techniques for Forecasting in Agriculture | CAAST 2021 

 

43 | P a g e  
 

Expenditure elasticity 

 

Average demand for SFW and other industrial uses (million tonnes) 

• Foodgrains use as SFWI to increase from 34 million tonnes in the early 1990s to 

around 76 million tonnes up to 2015-16.  

• It is expected to cross 95 million tones by the end of 2025-26 and above 120 million 

tones by 2032-33.  

• The ratio of SFW to total foodgrains’ demand would increase from less than 25 

percent in TE 2012-13 to around 40 percent by 2032-33 

Supply Elasticity – Crop Area 
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Supply Elasticity – Yield 

 

Supply Elasticity – Farm Harvest Price 

 

Supply Elasticity – Exports 
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Net balances of supply and demand of food grains by 2032-33  

Demand Estimates – Food grains: 331-346 Million Tonnes  

Milk: 300-355 Million Tonnes  

Horticultural commodities: 585-696 MT  

Supply Estimates –  Food grains: 367-375 Million Tonnes  

Milk: 326-33 Million Tonnes  

 Horticultural commodities: 626-675 MT 

 

Final Estimates of Demand(MT) 

 

Final Estimates of Supply (MT) 

 

 



                                                           Time Series Techniques for Forecasting in Agriculture | CAAST 2021 

 

46 | P a g e  
 

Conclusion 

The balance sheet of demand and supply looks quite affirmative for food grains except the case 

of oilseeds in which case India is already in acute deficit.India is poised for some surplus in 

rice and wheat while coarse grains will be sufficient to meet the domestic demand whereas 

pulses will have deficit of around 4 to 6 million tonnes.The overall foodgrains will have quite 

comfortable position as far as food security is concerned. In oilseeds a massive deficit of more 

than 50 million tonnes will appear which was worked out without including the imported palm 

oil and unless India succeeds in achieving nothing less than second Yellow Revolution either 

through technological breakthrough somewhat similar to BT Cotton, or there is massive 

expansion in area under oilseeds along with transformation achieved in the yield rate. There is 

huge possibility of expanding area under oil palm which has much better yield rate compared 

to oilseed field crops. In other commodities including milk, meat, fruits and vegetables and 

sugar there appears to be fine balance between demand and supply given the assumptions on 

supply side turns true. 
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A time series (TS) is a collection of observations on a quantitative characteristic of a 

phenomenon observed sequentially in time. Here we are interested on those observations which 

are collected at equally spaced as well as at discrete time intervals, may be collected hourly, 

daily, weekly, monthly, or yearly, and so on. For example, daily maximum temperatures, 

weekly agricultural price data, monthly sales, yearly gross national product, annual crop 

production, etc. A basic assumption in any TS analysis is that some aspects of the past pattern 

will continue into the future. Hence, dependency through time is used for extrapolation in the 

future. The notation such as {Xt} or {Yt} (t =1,…,T) is used to denote a time series of length 

T. The goals of time series models include smoothing irregular series, forecasting series into 

the medium or long term future and causal modelling of variables moving in parallel through 

time. 

Time series methods 

Time series methods use different statistical methods to treat the time series data approximately 

to draw inferences. These models may be univariate, i.e., modelling of single series of data or 

multivariate that includes multiple series of data containing different variables. Besides, non-

linear time series techniques are also popular nowadays. Here it is tacitly assumed that 

information about the past is available in the form of numerical data.  Ideally, at least 50 

observations are necessary for performing TS analysis/ modelling, as propounded by Box and 

Jenkins who were pioneers in TS modelling. 

Decomposition models are among the oldest approaches to TS analysis albeit a number of 

theoretical weaknesses from a statistical point of view.  These were followed by the crudest 

form of forecasting methods called the moving averages method.  As an improvement over this 

method which had equal weights, exponential smoothing methods came into being which gave 

more weights to recent data. Exponential smoothing methods have been proposed initially as 

just recursive methods without any distributional assumptions about the error structure in them, 

mailto:girish.stat@gmail.com
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and later, they were found to be particular cases of the statistically sound Auto-Regressive 

Integrated Moving Average (ARIMA) models.  

This write-up is intended to provide an overview on both linear and non-linear time series 

models within the ARMA framework and some frequently used parametric nonlinear models 

such as Autoregressive conditional heteroscedastic (ARCH) and its generalised form GARCH 

models. At the end we have given R code for the use of linear and non-linear models on a real 

data set for better understanding and acceptability. 

1. Linear Time Series Models 

In a data series containing observations spaced at equal intervals of time often may be 

correlated. Such correlation between consecutive observations is called autocorrelation. When 

the data is autocorrelated, most of the standard modeling methods based on the assumption of 

independent observations may become misleading. We therefore need to consider alternative 

methods that consider the serial dependence in the data which can be achieved by employing 

time series models such as autoregressive integrated moving average (ARIMA) models. 

The most popular class of linear time series models consists of autoregressive moving average 

(ARMA) models, including purely autoregressive (AR) and purely moving-average (MA) 

models as special cases. ARMA models are frequently used to model linear dynamic structures, 

to depict linear relationships among lagged variables, and to serve as vehicles for linear 

forecasting. A particularly useful class of models contains the so-called autoregressive 

integrated moving average (ARIMA) models, which includes stationary ARMA - processes as 

a subclass.  

1.1 Autoregressive (AR) Model 

A stochastic model that can be extremely useful in the representation of certain practically 

occurring series is the autoregressive model. In this model, current value of the process is 

expressed as a finite, linear aggregate of previous values of the process and a shock t . Let us 

denote the values of a process at equally spaced time epochs , 1, 2,...t t t− −  by 1 2, , ,...t t ty y y− −  

then ty can be described as 

1 1 2 2t t t p t p ty y y y   − − −= + + + +  

If we define an autoregressive operator of order p by 

( ) 2

1 21 p

pB B B B   = − − − −  

where B is the backshift operator such that Byt = yt−1 , autoregressive model can be written as 
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(B) yt = t . 

 

1.2 Moving Average (MA) Model 

Another kind of model of great practical importance in the representation of observed time-

series is finite moving average process. MA (q) model is defined as 

1 1 2 2t t t t q t qy       − − −= − − − −  

If we define a moving average operator of order q by 

( ) 2

1 21 q

qB B B B   = − − − −
 

where B is the backshift operator such that Byt = yt−1 , moving average model can be written 

as yt = (B)t . 

 

1.3 Autoregressive Moving Average (ARMA) Model 

 

To achieve greater flexibility in fitting of actual time-series data, it is sometimes advantageous 

to include both autoregressive and moving average processes. This leads to mixed 

autoregressive-moving average model 

1 1 2 2 1 1 2 2t t t p t p t t t q t qy y y y         − − − − − −= + + + + − − −
 

 

or 

(B) yt  = (B)t 

and is written as ARMA(p, q). In practice, it is quite often adequate representation of actually 

occurring stationary time-series can be obtained with autoregressive, moving average, or mixed 

models, in which p and q are not greater than 2. 

 

1.4 Autoregressive Integrated Moving Average (ARIMA) Model 

 

A generalization of ARMA models which incorporates a wide class of non-stationary time-

series is obtained by introducing the differencing into the model. The simplest example of a 

non-stationary process which reduces to a stationary one after differencing is Random Walk. 

A process { yt } is said to follow an Integrated ARMA model, denoted by ARIMA (p, d, q), if 

d yt = (1 − B)d t is ARMA (p, q). The model is written as 

( )( ) ( )1
d

t tB B y B  − =
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t  
are assumed to be independently and identically distributed with a mean zero and a constant 

variance of 2 .  

2.  Non-linear models: ARCH and GARCH models 

After the dominance of the ARIMA model for over two decades, the need of such model was 

felt which could predict with varying variance of the error term. The solution was provided by 

Engle (1982) when he developed ARCH model to estimate the mean and variance of the United 

Kingdom inflation. This model has few interesting characteristics; it models the conditional 

variance as the square of the function of the previous error term and assumes the unconditional 

variance to be constant. Along with the ARCH models can model heavy tail data which are 

common in financial market. Besides these, Bera and Higgins (1993) pointed out that ARCH 

models are easy and simple to handle, can take care of clustered errors, non-linearity and 

importantly takes care of changes in the econometrician’s ability to forecast. 

The ARCH (q) model for the series  is defined by specifying the conditional distribution 

of   given the information available up to time t −1. Let   denote this information. ARCH (q) 

model for the series   is given by 

                         
( )t1tt 0,hN~|ψε −  

                        
 

=

−+=
q

i

itit aah
1

2

0                                                      

where, 0a0  , 0ai   , for all i and 
=


q

1i

i 1a    are required to be satisfied to ensure non-

negativity and finite unconditional variance of stationary   series.  Bollerslev (1986) and 

Taylor (1986) proposed the Generalized ARCH (GARCH) model independently of each other, 

in which conditional variance is also a linear function of its own lags and has the following 

form 

                                                               
2/1

ttt h =
                                                (1)

 

where  t  ~ N (0,1). A sufficient condition for the conditional variance to be positive is  

p,...2,1,j0,bq.,...2,1,i0,a0,a ji0 ==  

The GARCH (p, q) process is weakly stationary if and only if 

 t

 t
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The conditional variance defined by (1) has the property that the unconditional autocorrelation 

function of 2

t  ; if it exists, can decay slowly. For the ARCH family, the decay rate is too rapid 

compared to what is typically observed in financial time-series, unless the maximum lag q is 

long. As (1) is a more parsimonious model of the conditional variance than a high-order ARCH 

model, most users prefer it to the simpler ARCH alternative. The most popular GARCH model 

in applications is the GARCH (1,1) model. 

Model Building 

Step 1: Determine whether the time series is stationary. 

The series being analysed must be stationary. A TS is said to be stationary if its underlying 

generating process is based on a constant mean and constant variance with its autocorrelation 

function (ACF) essentially constant through time.  Thus, if we consider different subsets of a 

realization (TS ‘sample’) the different subsets will typically have means, variances and 

autocorrelation functions that do not differ significantly which means that stationary time 

series has the property that its statistical properties such as the mean and variance are constant 

over time. The presence of stationarity in the data can be obtained by simply plotting the raw 

data or by plotting the autocorrelation and partial autocorrelation function. Statistical tests like 

Dickey- Fuller test, augmented Dickey-Fuller test, KPSS (Kwiatkowski, Phillips, Schmidt, and 

Shin) test, Philips-Perron test are also available to test the stationarity.  

Step 2: Identify the model. 

After the time-series is stationary we go for identifying the mean model for the series. This is 

done by fitting the simple ARIMA (Autoregressive integrated moving average) model. The 

ARIMA (p,d,q) is determined by the ACF (Autocorrelation function) and PACF (Partial 

autocorrelation function) values of the stationary series. The parameter p is determined by the 

ACF value and q by the PACF value and d refers to order of differencing done to the original 

series to make it stationary. 

 

Step 3: Estimate the model parameters and diagnostic checking. 

Once few tentative models are specified, estimation of the model parameters is straightforward. 

The parameters are estimated through maximum likelihood function such that an overall 

measure of errors is minimized or the likelihood function is maximized. This step is basically 
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to check if the model assumptions about the errors are satisfied. This is achieved by performing 

portmanteau test. The test is utilized to see whether the model residuals are white noise. The 

null hypothesis tested is that the current set of residual is white 

noise. 

 The Ljung-Box statistic is given by: 

1 2

1

( 2) ( )
h

k

k

Q n n n k r−

=

= + −  

where, h is the maximum lag, n is the number of observations, k is the number of parameters 

in the model. If the data are white noise, the Ljung-Box Q statistics has a chi-square distribution 

with (h-k) degrees of freedom.  

 

Step 4: Select the most suitable ARIMA model 

The most suitable ARIMA model is selected using the smallest Akaike Information Criterion 

(AIC) or Schwarz-Bayesian Criterion (SBC). AIC is given by 

                                           AIC = (−2log L + 2m)      

where, m= p+q and L is the likelihood function. SBC is also used as an alternative to AIC 

which is given by 

                                             
2log ( log ) /SBC m n n= +                                            

If the model is not adequate, a new tentative model should be identified, which is again 

followed by the parameter estimation and model verification. Diagnostic information may help 

suggest alternative model(s). The steps of model building process are typically repeated several 

times until a satisfactory mean model is finally selected. The final model can then be used for 

prediction purposes.  

 

Step 5: Determination of residuals and heteroscedasticity test. 

After finding the mean model now the residuals are to be determined. And we create a new 

variable called ‘rsquare’ by squaring the residuals. Then the ACF and PACF values of the 

‘rsquare’ are determined and the lags in which these values are found to be significant are 

identified. The test for heteroscedasticity is done at identified significant lags. The test 

employed is the ARCH-LM test.  

Step 6: Residuals and diagnostic checking. 
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The residuals obtained from the mean model used for fitting the different GARCH models were 

squared and stored in a new variable called ‘esquare’. As already mentioned previously, the 

diagnostic tests are employed to check whether the residuals are white noise or not. 

 

Step 7: Estimation of parameters. 

The parameters of the obtained model are estimated using method of maximum likelihood 

(MLE). And then forecasting is done using the selecting model. 

 

5. Illustration 

In this illustration Cotlook A index data is used and was collected from the commodity price 

bulletin, published by the United Nations Convention of Trade and Development (UNCTAD). 

The series contains 360 data pints, 346 data points are used for modelling and remaining 14 

points for forecasting. At first the ARIMA model was applied to the data set and on 

unsatisfactory performance of the model, the GARCH model was used. 

5.1 Fitting of the Cotlook A index 

Various combinations of the ARIMA models were tried, among all, the AR (1) model had 

minimum AIC and BIC values. The AIC value for fitted GARCH model has been found to be 

minimum when the mean equation depends on two recent pasts only. Investigating the 

autocorrelation function (Acf) of squared residuals of AR (2) model, it is found that the Acf 

and Pacf are maximum at lag 3, which is 0.226 and 0.221 respectively. But if we go for AR 

(2)-ARCH (3) model, a large number of parameters are needed to be estimated.  So, to get a 

parsimonious model, the AR (2)-GARCH (1, 1) model is selected. 

The mean and conditional variance for fitted AR (2)-GARCH (1, 1) model is computed as 

follows:  

  yt = 141.9264  –1.3905  yt-1+ 0.4538 yt-2 + t  

                          (3.94)   (0.05)           (0.05) 

where  

t
2/1

tt h  = ,  

and ht satisfies the variance equation 
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ht = 8.470 + 0.208 
2

1−t + 0.215 ht-1 

          (1.97)       (0.09)        (0.079) 

The values within brackets denote corresponding standard errors of the estimates. The AIC 

value, for fitted GARCH model is 2288.88. 

Table 1. Forecast of the Cotlook A index series 

MONTH 
ACTUAL 

VALUE 

FORECAST 

ARIMA(1,1,0) 

FORECAST 

AR(2)-

GARCH(1,1) 

Feb-11 469.98 408.34(8.30) 389.59(26.46) 

Mar-11 506.34 416.47(15.56) 371.55(25.74) 

Apr-11 477.56 421.40(22.35) 348.54(25.05) 

May-11 364.91 424.53(28.55) 324.69(24.39) 

Jun-11 317.75 426.66(34.17) 301.98(23.75) 

Jul-11 268.96 428.23(39.29) 281.25(23.13) 

Aug-11 251.55 429.49(43.97) 262.76(22.54) 

Sep-11 257.63 430.57(48.29) 246.50(21.97) 

Oct-11 243.85 431.55(52.30) 232.32(21.42) 

Nov-11 230.78 432.48(56.05) 220.01(20.90) 

Dec-11 210.43 433.37(59.58) 209.35(20.39) 

Jan-12 222.91 434.25(54.45) 200.15(19.91) 

Feb-12 222.12 435.12(57.13) 192.21(19.44) 

Mar-12 219.36 435.99(59.68) 185.37(19.01) 

 

Table 2. Forecast evaluation of the Cotlook A index series 

MODEL RMSE RMAPE (%) 

ARIMA(1,1,0) 44.03 60.72 

AR(2)-GARCH(1,1) 15.38 9.36 
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6. R code for analysing a time series data 

library(“tseries”) 

library(“forecast”) 

library(“fgarch”) 

setwd("C:/Users/ACHAL/Desktop") # Setting of the work directory 

data<-read.table("data.txt") # Importing data  

datats<-ts(data,frequency=12,start=c(1982,4)) # Converting data set into time series 

plot.ts(datats) # Plot of the data set 

adf.test(datats) # Test for stationarity 

diffdatats<-diff(datats,differences=1) # Differencing the series 

datatsacf<-acf(datats,lag.max=12) # Obtaining the ACF plot 

datapacf<-pacf(datats,lag.max=12) # Obtaining the PACF plot 

auto.arima(diffdatats) # Finding the order of ARIMA model 

datatsarima<-arima(diffdatats,order=c(1,0,1),include.mean=TRUE) # Fitting of ARIMA        

model 

forearimadatats<-forecast.Arima(datatsarima,h=12) # Forecasting using ARIMA model 

plot.forecast(forearimadatats) # Plot of the forecast  

residualarima<-resid(datatsarima) # Obtaining residuals 

archTest(residualarima,lag=12) # Test for heteroscedascity 

# Fitting of AR-GARCH model 

garchdatats<-garchFit(formula = ~ arma(2)+garch(1, 1), data = datats, cond.dist = c("norm"), 

include.mean = TRUE, include.delta = NULL, include.skew = NULL, include.shape = NULL, 

leverage = NULL, trace = TRUE,algorithm = c("nlminb")) 

# Forecasting using AR-GARCH model 

forecastgarch<-predict(garchdatats, n.ahead = 12, trace = FALSE, mse = c("uncond"), 

plot=FALSE, nx=NULL, crit_val=NULL, conf=NULL) 

plot.ts(forecastgarch) # Plot of the forecast 
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1. Introduction 

Modelling and forecasting of major economic phenomenon involve a large number of 

variables, thus it must be addressed using the multivariate time-series methods. A large number 

of time-series models have been proposed in literature as alternatives to structural econometric 

models in economic forecasting applications. But, after the pioneering work of Sims (1980) 

the VAR models have received much attention. The class of VAR models is a special case of 

more general Vector Autoregressive Moving Average (VARMA) models. The VAR models 

were initially used as macroeconomic models, but it has been found as a promising alternative 

to structural econometric models where simultaneous forecasts are required for a collection of 

related microeconomic variables.  

Let '
1 2( , ,..., )t t t nty y y y= denote an (n×1) vector of time series variables. The basic p-lag 

vector autoregressive VAR (p) model has the form: 

...1 1 2 2 3 3y A B y B y B y B yt t t t p t p t= + + + + + +− − − −  

where,  A is k× 1 vector of intercepts, Bi (i =1, 2, …, p) is k × k matrices of parameters and                                                                                                                                                                                             

    

To have an understanding of the VAR model let us consider a simple two variable case and 

the lag be one, i.e., p = 1 and k = 2. The VAR model can be represented as: 

1, 11 11 11 12

2 2 21 22 2, 1 2

tt t

t t t

yy a b b

yt
y a b b y





−

−

       
       = = + +
       

       
 

                                        = 1t tA By −+ +  

Now further defining  

                                       
'

1,( ..., )t t t px y y− −=  

and, 

),0(~  iidNt
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 
 

 

The likelihood function can be derived in two parts as follows: 

                                             𝛼|Σ, 𝑦~𝑁(𝛼,̂ Σ ⊗ (𝑋′𝑋)−1) 

and 

                                                Σ−1|𝑦 ∼ 𝑊(𝑆−1, 𝑇 − 𝐾 − 𝑀 − 1) 

where, 𝐵̂ = (𝑋′𝑋)−1𝑋′𝑌 is the OLS estimates of B and 𝛼̂ = 𝑣𝑒𝑐(𝐵̂) and  𝑆 = (𝑌 − 𝑋𝐵̂)′(𝑌 −

𝑋𝐵̂). 

 

2. Fitting of VAR model 

In this section attempt has been made to summarize broadly the steps followed for modelling 

a multivariate time series data using VAR model. The steps are as follows: 

 

1. Determination of Stationarity of the time series 

The Stationarity of the data sets used is tested. As, it is the basic assumption which 

needs to be satisfied before proceeding for analysis of any time-series data. Statistical 

tests like Dickey-Fuller test, Augmented Dickey-Fuller (ADF) test, KPSS 

(Kwiatkowski, Phillips, Schmidt, and Shin) test, Philips-Perron test are available to 

test the stationarity. If required, the series needs to be differenced to make it stationary 

in mean. 

2. Identification the mean model 

After the time-series is stationary we go for identifying the mean model for the series. 

This is done by fitting the simple ARIMA (Autoregressive integrated moving average) 

model. The ARIMA (p,d,q) is determined by the ACF (Autocorrelation function) and 

PACF (Partial autocorrelation function) values of the stationary series. The parameter 

p is determined by the ACF value and q by the PACF value and d refers to order of 

differencing done to the original series to make it stationary. This procedure is useful 

for univariate case, but in case of multivariate setup we have to use either VAR or 

Vector Error Correction (VEC) model. The selection of the model depends upon the 

nature of the series to be modelled. If the series have long run dependency among 

themselves one need to use the VEC or else VAR model is used. Johansen test for 
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cointegration is used to have an insight into the dependency relationship with the 

alternate hypothesis being the presence of cointegration. If we do not find cointegration 

between the series then we use the VAR model to identify the mean process. The order 

of the VAR model is identified based on minimum Akaike Information Criterion (AIC) 

or Schwarz-Bayesian Criterion (SBC). AIC is given by 

                                                      AIC = (−2log L + 2k)     

where, k is the number of parameters of the model  and L is the likelihood function. 

SBC is also used as an alternative to AIC which is given by 

                                             
2log ( log ) /SBC k n n= +                                            

3. Residual diagnostics 

The parameters of the VAR model is estimated through maximum likelihood function 

such that an overall measure of errors is minimized or the likelihood function is 

maximized. This step is basically to check if the model assumptions about the errors 

are satisfied. To achieve this we used the autocorrelation function (ACF) plots for 

testing the presence of serial correlation in the residual series at various lags, we have 

also used the Q-Q normal probability plots to check the normality assumption of the 

residuals. If the residuals are either serially correlated or non-normal, we need to repeat 

Step 2. 

4. Model comparison 

The efficiency of the VAR model for forecasting is compared on the basis of following 

criterion: 

Root Mean Squared Error (RMSE) expressed as: 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑌𝑝,𝑖 − 𝑌0,𝑖)

2
𝑁

𝑡=1

 

Mean absolute error (MAE) expressed as: 

𝑀𝐴𝐸 =
1

𝑁
∑|(𝑌𝑝,𝑖 − 𝑌0,𝑖)|

𝑁

𝑖=1

 

where 

 𝑌0 𝑎𝑛𝑑 𝑌𝑝 are the observed and forecasted time series  

 N is the number of data points 
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The VAR model with minimum RMSE and MAE is selected for forecasting the multivariate 

time series under consideration. 

The above described steps are followed and implemented using R software by calling the 

package “vars”. VAR model can be implemented in various other software like SAS,  EViews, 

etc. 

 

3. Impulse Response (IR) 

Apart from modelling and forecasting VAR model is used for studying the impulse of one 

variable on the other variables of the system. As, VAR models represent the correlations among 

a set of variables, they are often used to analyse certain aspects of the relationships between 

the variables of interest. Granger (1969) has defined a concept of causality which, under 

suitable conditions, is fairly easy to deal within the context of VAR models. Therefore, it has 

become quite popular in recent years. The idea is that a cause cannot come after the effect. If a 

variable x affects a variable z, the former should help improving the predictions of the latter 

variable. Ωt is the information set containing all the relevant information in the universe 

available upto and including period t. zt(h|Ωt) be the optimal (minimum MSE) h-step predictor 

of the process zt at origin t, based on the information in Ωt. The corresponding forecast MSE: 

Σt(h|Ωt). The process xt is said to cause zt in Granger’s sense if  

Σt(h|Ωt) < Σt(h|Ωt {xs : s ≤ t}) for at least one h =1,2,...  

Ωt {xs : s ≤ t} is the set containing all the relevant information in except for the information in 

the past and present of the xt process. If zt can be predicted more efficiently if the information 

in the xt process is taken into account in addition to all other information, then xt is Granger-

causal for zt. Granger-causality may not tell us the complete story about the interactions 

between the variables of a system. In applied work, it is often of interest to know the response 

of one variable to an impulse in another variable in a system that involves a number of further 

variables as well. One would like to investigate the impulse response relationship between two 

variables in a higher dimensional system. If there is a reaction of one variable to an impulse in 

another variable we may call the latter causal for the former. We will study this type of causality 

by tracing out the effect of an exogenous shock or innovation in one of the variables on some 

or all of the other variables. This kind of impulse response analysis is called multiplier analysis. 

4. Data and implementation 

For illustration we have taken three series namely the Food Wholesale price index (FWPI), 

monthly rainfall (mm) data and the Fiscal deficit data to study the BVAR model. The FWPI 

data was collected from Office of the Economic Adviser, Ministry of Commerce and Industry, 
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Government of India. The rainfall data was collected from the official website of India 

Meteorological Department (IMD), Ministry of Earth Sciences, Government of India. The 

Fiscal deficit data was collected from the official website of Reserve Bank of India (RBI). All 

three series contain 120 data points from January, 2005 to December, 2014 out of which 114 

points were used for model building purpose and the remaining 6 points were kept for 

validation. The time plot of the data set is depicted by Figure 1 and the descriptive statistics is 

given in Table 1. Looking at the time plot of the series we can identify the presence of 

seasonality in the rainfall series, hence the series were seasonally adjusted following standard 

procedure. From the descriptive statistics we can have an idea that the series under 

consideration is slightly skewed, has a small amount of kurtosis and also the series is non-

normal. VAR model was fitted as per the steps described in Section 2 and hence forecasts were 

also obtained. Estimates of VAR model is presented in Table 2. The impulse response graph is 

depicted in Figure 2. From Table 2 we could find the interdependencies among the three series 

used for analysis. This helps the researcher to describe the movement of the series together. 

Further, with help of impulse response function we can find exactly how one series is affected 

by other series independently. This provides a good insight into the transfer of shocks between 

the variables in the system. 

Table 1. Descriptive statistics 

 FISCAL FWPI RAINFALL 

Mean 302.30 167.28 94.12 

Median 294.69 164.10 44.90 

Maximum 1273.83 265.30 334.10 

Minimum -911.50 97.60 1.70 

Std. Dev. 321.03 49.98 95.24 

Skewness -0.14 0.34 0.97 

Kurtosis 4.58 1.84 2.48 

Jarque-Bera 13.04 9.01 20.45 

Probability < 0.01 <0.01 < 0.01 
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Table 2. VAR model estimates 

 FISCAL_D FWPI_D RAINFALL_SA 

FISCAL_D(-1) -0.71 0.0002 0.008 

 (0.09) (0.001) (0.01) 

FISCAL_D(-2) -0.60 0.002 -0.009 

 (0.10) (0.001) (0.01) 

FISCAL_D(-3) -0.33 0.004 0.005 

 (0.12) (0.001) (0.01) 

FISCAL_D(-4) -0.28 0.002 0.001 

 (0.11) (0.001) (0.01) 

FISCAL_D(-5) -0.35 0.001 0.004 

 (0.09) (0.001) (0.01) 

FWPI_D(-1) -2.47 0.14 -1.88 

 (8.78) (0.09) (1.06) 

FWPI_D(-2) -9.49 -0.003 0.61 

 (8.64) (0.09) (1.05) 

FWPI_D(-3) 13.30 0.17 -1.91 

 (8.57) (0.09) (1.04) 

FWPI_D(-4) -23.09 -0.25 0.25 

 (8.97) (0.09) (1.09) 

FWPI_D(-5) -14.10 -0.30 -0.41 

 (8.85) (0.09) (1.07) 

RAINFALL_SA(-1) 0.62 0.01 -0.06 

 (0.85) (0.009) (0.10) 
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Figure 1. Time plot of Food WPI (solid line), Rainfall (dotted line) and Fiscal (dashed line) 
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Figure 2. The impulse response graph of VAR model 

R code: 

# Loading required pakages 

library(vars) 

library(tseries) 

library(rmgarch) 

library(fGarch) 

library(fBasics) 

setwd("C:/Users/BABU/Desktop")# Setting the working directory 

data<-read.table("Achal.txt",header=TRUE)# Importing the data set 

X<-data[,1] 

Y<-data[,2] 

adf.test(X)# Testing the stationarity of the data set 

adf.test(Y) 

X_d=diff(X)# Differencing the data set 
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Y_d=diff(Y) 

archTest(X) # Testing ARCH effect of the data set 

data_d<-data.frame(X_d,Y_d) 

var_1=VAR(data,type="const",lag.max=12,ic="AIC") # Fittting VAR model to the data set 

irf(var_1, impulse = "X", response = c("Y"), boot = FALSE) 

plot(irf(var_1, impulse = "X", response = c("Y"), boot = FALSE)) # Plotting the IRF of the 

model 

# Testing the residuals of the model 

normality.test(var_1) 

predict(var_1, n.ahead = 6, ci = 0.95) 

serial.test(var_1, lags.pt = 12, type = "PT.adjusted") 

library(MTS) 

MarchTest(data, lag = 12) # Testing for the presence of multivariate ARCH effect 

out1<-BEKK11(data, include.mean = T, cond.dist = "normal") #Fitting MGARCH- BEKK 

model 

#Fitting MGARCh-DCC model 

garch11.spec = ugarchspec(mean.model = list(armaOrder = c(1,0)),variance.model = 

list(garchOrder = c(1,1),model = "sGARCH"), distribution.model = "norm") 

dcc.garch11.spec = dccspec(uspec = multispec( replicate(2, garch11.spec) ), dccOrder = c(1,1), 

distribution = "mvnorm") 

dcc.fit = dccfit(dcc.garch11.spec, data=data, fit.control=list(scale=TRUE)) 

print(dcc.fit) 
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1. Introduction  

Time series modelling and forecasting is based on the assumption of stationarity that is 

constancy of parameters like mean, variance and trend over time. Nonstationarity means a 

variable has no clear tendency to return to a constant value or a linear trend. Most of the 

macroeconomic time series datasets found to be nonstationary. An important objective of 

empirical research in macroeconomics is to test hypothesis and estimate relationships among 

such aggregate variables. The statistical theories applied during the 1980s in building and 

testing large simultaneous equation models, such as Ordinary Least Squares (OLS), were based 

on the assumption that the variables were stationary. The problem is that the statistical 

inference associated with stationary processes is invalid for nonstationary time series. With 

nonstationary time series, it would be a methodological error to use OLS to estimate their long-

run linear relationships because it would lead to spurious regression. Spurious regression is a 

situation in which there appears to be a statistically significant relationship between variables 

but the variables are unrelated. The technique of cointegration can better be used to estimate 

long-run relationships between nonstationary time series data.  

Granger (1981) shown that macroeconomic models containing nonstationary stochastic 

variables can be constructed in such a way that the results are both statistically sound and 

economically meaningful. His work has also provided the underpinnings for modeling with 

rich dynamics among interrelated economic variables. Granger has achieved this breakthrough 

by introducing the concept of cointegrated variables. Cointegration is an econometric concept 

which mimics the existence of a long-run equilibrium among economic time series. If two or 

more series are themselves nonstationary, but a linear combination of them is stationary, then 

they are said to be cointegrated.  

2. Stationarity and unit root test 

A stochastic process is said to be stationary if its mean and variance are constant over time and 

the value of the covariance between the two time periods depends only on the distance or gap 

or lag between the two time periods and not the actual time at which the covariance is 
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computed. In the time series literature, such stochastic process is known as a weakly stationary. 

Nonstationarity in a time series occurs when there is no constant mean, no constant variance, 

or both of these properties. It can originate from various sources but the most important one is 

the unit root. 

2.1 Unit root 

Any sequence that contains one or more characteristic roots that are equal to one is called a 

unit root process. The simplest model that may contain a unit root is the AR(1) model. Consider 

the autoregressive process of order one, AR(1), below: 

tttt eXYY ++= −  '

1
                                                                            (1) 

where Xt are optional exogenous regressors which may consists of constant or a constant and 

trend,  and   are paramets to be estimated and the te denotes a serially uncorrected white 

noise error term with a mean of zero and a constant variance. If 1=  , equation (1) becomes 

a random walk without drift model, that is, a nonstationary process. When this happens, we 

face what is known as the unit root problem. This means that, we face with a situation of 

nonstationarity in the series. If, however, 1 , then the series tY  is stationary.  

2.2 The Augmented Dickey-Fuller (ADF) test 

The basic idea behind the ADF unit root test for nonstationarity is to simply regress tY  on its 

(one period) lagged value 1−tY  and find out the estimated   is statistically equal to one or not. 

Equation (1) can be manipulated by subtracting 1−tY  from both sides to obtain  

ttttt eXYYY ++−=− −−  '

11 )1(  

tttt eXYY ++= −  '

1
                                                                         (2) 

where 1−=   and   is first difference operator. 

In practice, instead of estimating equation (1), we shall estimate equation (2) and test for the 

null hypothesis of 0=  against the alternative of  0 . If  0= , then 1= , meaning that 

we have a unit root problem and the series under consideration is nonstationary. The decision 

to reject or not to reject the null hypothesis of 0=  is based on the Dickey-Fuller (DF) critical 
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values of the  (tau) statistic. The DF test is based on an assumption that the error terms te  are 

uncorrelated.  

However, in practice, the error terms in the DF test usually show evidence of serial correlation. 

To solve this problem, Dickey and Fuller have developed a test known as the Augmented 

Dickey-Fuller (ADF) test. In the ADF test, the lags of the first difference are included in the 

regression equation in order to make the error term te  white noise and, therefore, the regression 

equation is presented in the following form: 


=

−− ++=
k

i

titittt eYXYY
1

'

1                                                            (3) 

where k denotes the lag length.  

3. Testing of Cointegration  

3.1 Engle-Granger cointegration 

Engle and Granger (1987) solution to spurious regression problem may be illustrated by the 

following regression equation: 

 ttt eXY ++= 10 
                                                                                          (4) 

where tY  is the dependent variable, tX  the single exogenous regressor, and }{ te  a white-noise, 

mean-zero sequence.  

Granger (1981) argues that in order to be meaningful, an equation has to be consistent in the 

sense that “a simulation of the explanatory right-hand side should produce the major properties 

of the variable being explained”. For example, if tY  is a seasonal variable, then tX  has to be 

seasonal, if te  is to be white noise. To develop the idea further, Granger (1981) defined the 

concept of degree of integration of a variable. If variable tX  can be made approximately 

stationary by differencing it d times, it is called integrated of order d, or I(d).  

Consider equation (4) and assume that both )1(~ IYt  and )1(~ IX t . Then, generally 

)1(~1 IXY tt −  as well. There is, however, one important exception. If )0(~ Iet , then 

)0(~1 IXY tt − , i.e., the linear combination tt XY 1−  has the same statistical properties as an 
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I(0) variable. There exists only one such combination so that coefficient 1  is unique. In this 

special case, variables tX  and tY  are called cointegrated. More generally, if a linear 

combination of a set of I(1) variables is I(0), then the variables are cointegrated. This concept, 

introduced by Granger (1981) has turned out to be extremely important in the analysis of 

nonstationary economic time series. A generalization to I(d) variables, where d is no longer an 

integer, is also possible, in which case the linear combination of cointegrated variables has to 

be )( 0ddI − ,where 00 d . 

Engle-Granger method for testing cointegration 

To explain the Engle-Granger testing procedure, let’s begin with the type of problem likely to 

be encountered in applied studies. Suppose that two variables tY  and tX  are believed to be 

integrated of order 1 and we want to determine whether there exists an equilibrium relationship 

between the two. Engle and Granger (1987) proposed a four step procedure to determine if two 

I(1) variables are cointegrated of order CI(1,1). 

Step-1: Pretest the Variables for their Order of Integration 

By definition, cointegration necessitates that two variables be integrated of same order. Thus, 

the first step in the analysis is to pretest each variable to determine its order of integration. The 

Augmented Dickey-Fuller test can be used to infer the number of unit roots in each of the 

variables. If both variables are stationary, it would not be necessary to proceed since standard 

time series methods apply to stationary variables. If the variables are integrated of different 

orders, it should be concluded that they are not cointegrated. 

Step-2: Estimation of long-run equilibrium relationship  

If, both variables tY  and tX  are I(1), then estimate the long-run equilibrium relationship in the 

form 

 
ttt eXY ++= 10                                                                                                   

If the variables are cointegrated, an ordinary least squares regression yields a super-consistent 

estimator of the cointegrating parameters 0  and 1 .  

Step-3: Estimate the Error-Correction Model (ECM) 

If the variables are cointegrated, the residuals from the equilibrium regression can be used to 

estimate the ECM. 

Step-4: Assess model adequacy 
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There are several procedures available that determine whether the estimated error-correction 

model is appropriate or not.  

4.2 Johansen's cointegration 

To test the presence of cointegration using a single equation (i.e., Engle-Granger approach) 

becomes a bit restrictive. Let us consider a situation where we have p>2 variables in the model 

and p-1 of them are not weakly exogenous, then the single equation approach can be 

misleading, particularly if there is more than one cointegration relationship present. Thus, when 

the number of cointegration vectors is unknown and there is a need to allow all variables in the 

model to be potentially endogenous, the multivariate Vector Autoregressive (VAR) approach 

developed by Johansen (1988) is efficient. Johansen test of cointegration allow the researcher 

to test restricted version of the cointegrating vector(s) and speed of adjustment parameters. The 

first step of Johansen test involves the determination of cointegrating rank, that is, the number 

of cointegrating relations. Johansen's procedure builds cointegrated variables directly on 

maximum likelihood estimation instead of relying on Ordinary Least squares (OLS) estimation. 

Johansen derived the maximum likelihood estimates using sequential tests for determining the 

number of cointegrating vectors. In fact, Johansen's procedure is nothing more than a 

multivariate generalisation of the Dickey-Fuller test.  

The Johansen cointegration procedure is based upon an unrestricted vector autoregressive 

(VAR) model specified in error-correction form as follows:

 

  

 

 

)5(
1

1

1 
−

=

−− ++=
k

i

tititt eYYY

     

      where 

  

 

tY
 
includes all  variables (for example price indices of crude oil, rice etc.) of the  

model which are , 

  and are parameter matrices to be estimated, 

p

)1(~ I

 i

tktkttt AAA eYYYY ++++= −−− ...2211

)...( 21 kAAAI −−−−−=

1,...,1),...( 21 −=−−−−= kiAAAI ii
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te  is a vector of random errors which follow a Gaussian white noise process.  

The Johansen test for cointegration evaluates the rank (r) of the matrix . If , all 

variables are and thus not cointegrated. In case , there exist r cointegrating 

vectors. In the third case, if  all the variables are and thus stationary, and any 

combination of stationary variables will be stationary. represent the long response matrix 

and is defined as the product of two matrices:  and , of dimension and , 

respectively. The  matrix contains the long-run coefficients of the cointegrating vectors,   

is known as the adjustment parameter matrix and is similar to an error correction term.  

The Johansen cointegration method estimates the  matrix through an unrestricted VAR and 

tests whether one can reject the restriction implied by the reduced rank of . Two methods of 

testing for reduced rank of are the trace test and the maximum eigen value test, respectively: 

)6()ˆ1ln(
1

2


+=

−−=
n

ri

itrace T 

)7()ˆ1ln()1,( 1max +−−=+ rTrr 
 

where, is the estimated values of the ordered eigen values obtained from the estimated matrix 

and T  is the number of the observations after the lag adjustment.  

The trace statistics test the null hypothesis that the number of distinct cointegrating vectors  

is less than or equal to  against a general alternative. The maximum eigen value tests the null 

hypothesis that the number of cointegrating vectors is  against the alternative of 

cointegrating vectors. 

5. Causality from vector error correction model (VECM) 

The existence of cointegration in the bi-variate relationship implies Granger causality at least 

in one direction which under certain restrictions can be tested within the framework of 

Johansen cointegration by the Wald test. If the   matrix in the cointegration matrix  has a 

complete column of zeros, no causal relationship exists since no cointegrating vector appears 

in that particular block. Pair wise causal relationship can be represented through the following 

equation: 

( ) 







+












++












+−








+








=













−

−

−

−

−−

t

t

kt

kt

k

t

t

tt

t

t

e

e

Y

Y
A

Y

Y
AYY

Y

Y

2

1

,2

,1

1,2

1,1

11,21,1

2

1

2

1

,2

,1
...








              (8)

                   

 

 0=r

)1(I pr 0

pr = )0(I



' )( rp )( pr 









i

)(r

r

r 1+r





                                                           Time Series Techniques for Forecasting in Agriculture | CAAST 2021 

 

72 | P a g e  
 

Parameters contained in matrices measure the short-run causality relationship, while is 

the cointegrating parameter that characterizes the long-run equilibrium relationship between 

the series. Through Eq. (8), three possibilities for long-run causality may be identified,                

(i) ;0,0 21    (ii) ;0,0 21 =   and (iii) .0,0 21 =   

The first case indicates bi-directional causality, while the second and third imply uni-

directional causality. To analyze for short-run causality we apply the Wald test with the null 

hypothesis that the joint contribution of the lags of endogenous variables is equal to zero. If the 

null hypothesis cannot be rejected it implies that the respective endogenous variables can be 

treated as exogenous in the system. In case of bi-variate models, the Johansen cointegration 

Eq. (5) can be rewritten as 

)9(
1

1

2

1

1,11,2,11,1  
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ttjtjitit eECTYYY 
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k
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k

j

ttjtjitit eECTYYY   

where, tY ,1 and tY ,2  are time series (of prices) and ECT is the error correction term. We test the 

short run causality through Eqs. (9) and (10), by examining the significance of all lagged 

dynamic terms. 

6. Illustration 

For the Illustration, monthly potato price of Delhi and Agra markets from Jan-2005 to Dec 

2019 has been used, which is obtained from National Horticultural and Development 

Foundation (NHRDF) website (http://nhrdf.org/en-us/). It has been done using “R” software. 

Import Data 
To import the data in the ‘R’ software use the following command. The imported data are 

saved as “data” variable in this case. To see the first few row of the data use the command 

‘head(data)’.  

data <- read.csv(choose.files(), header = TRUE) 
head(data) 

##   Month  Agra Delhi Mumbai Bangalore 
## 1 5-Jan 194.0   258    394       436 
## 2 5-Feb 221.0   245    451       429 
## 3 5-Mar 315.5   262    508       473 
## 4 5-Apr 410.0   454    664       658 
## 5 5-May 396.0   497    712       718 
## 6 5-Jun 383.0   659    702       736 

kA 

http://nhrdf.org/en-us/
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Extract Agra and Delhi Series 

The whole data contain potato price series of four markets viz. Agra, Delhi, Mumbai and 

Bangalore. From the following command we extract the price series of ‘Agra’ and ‘Delhi’ 

markets.  

Agra <- ts(data[ ,"Agra"], frequency=12,  start=c(2005,1), end=c(2019, 12)
) 
Delhi <- ts(data[ ,"Delhi"], frequency=12,  start=c(2005,1), end=c(2019, 1
2)) 

Time Plot of the data series 

plot(Agra) 

 

plot(Delhi) 
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## Differenced Series 

Agra_diff <- diff(Agra) 
Delhi_diff <- diff(Delhi) 

Test for Stationarity 

The first step for the cointegration analysis is to check the order of integration of the series. 

The order of integration for the cointegrating series should be same. In order to check order of 

integration of the series, we used ADF test and the PP test. When we consider ‘no drift and no 

trend’ both the price series are nonstationary at level. But, when we applied ADF test and PP 

test in the differenced series then we found that both the series are stationary. In other words 

we can say that order of integration for the both series are same i.e. one.  

ADF Test 
adf.test(Agra) 

## Augmented Dickey-Fuller Test  
## alternative: stationary  
##   
## Type 1: no drift no trend  
##      lag   ADF p.value 
## [1,]   0 -1.19  0.2517 
## [2,]   1 -2.04  0.0419 
## [3,]   2 -1.54  0.1262 
## [4,]   3 -1.56  0.1181 
## [5,]   4 -1.61  0.1020 
## Type 2: with drift no trend  
##      lag   ADF p.value 
## [1,]   0 -3.22   0.022 
## [2,]   1 -5.12   0.010 
## [3,]   2 -4.15   0.010 
## [4,]   3 -4.32   0.010 
## [5,]   4 -4.70   0.010 
## Type 3: with drift and trend  
##      lag   ADF p.value 
## [1,]   0 -3.42  0.0527 
## [2,]   1 -5.59  0.0100 
## [3,]   2 -4.58  0.0100 
## [4,]   3 -4.85  0.0100 
## [5,]   4 -5.35  0.0100 
## ----  
## Note: in fact, p.value = 0.01 means p.value <= 0.01 

adf.test(Delhi) 

## Augmented Dickey-Fuller Test  
## alternative: stationary  
##   
## Type 1: no drift no trend  
##      lag    ADF p.value 
## [1,]   0 -0.839  0.3785 
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## [2,]   1 -1.840  0.0664 
## [3,]   2 -1.418  0.1709 
## [4,]   3 -1.386  0.1822 
## [5,]   4 -1.136  0.2720 
## Type 2: with drift no trend  
##      lag   ADF p.value 
## [1,]   0 -3.05  0.0349 
## [2,]   1 -5.42  0.0100 
## [3,]   2 -4.78  0.0100 
## [4,]   3 -4.80  0.0100 
## [5,]   4 -4.52  0.0100 
## Type 3: with drift and trend  
##      lag   ADF p.value 
## [1,]   0 -3.32  0.0699 
## [2,]   1 -5.90  0.0100 
## [3,]   2 -5.26  0.0100 
## [4,]   3 -5.42  0.0100 
## [5,]   4 -5.14  0.0100 
## ----  
## Note: in fact, p.value = 0.01 means p.value <= 0.01 

adf.test(Agra_diff) 

## Augmented Dickey-Fuller Test  
## alternative: stationary  
##   
## Type 1: no drift no trend  
##      lag   ADF p.value 
## [1,]   0 -8.71    0.01 
## [2,]   1 -9.30    0.01 
## [3,]   2 -7.55    0.01 
## [4,]   3 -6.36    0.01 
## [5,]   4 -7.16    0.01 
## Type 2: with drift no trend  
##      lag   ADF p.value 
## [1,]   0 -8.69    0.01 
## [2,]   1 -9.28    0.01 
## [3,]   2 -7.53    0.01 
## [4,]   3 -6.34    0.01 
## [5,]   4 -7.14    0.01 
## Type 3: with drift and trend  
##      lag   ADF p.value 
## [1,]   0 -8.66    0.01 
## [2,]   1 -9.25    0.01 
## [3,]   2 -7.51    0.01 
## [4,]   3 -6.32    0.01 
## [5,]   4 -7.12    0.01 
## ----  
## Note: in fact, p.value = 0.01 means p.value <= 0.01 

adf.test(Delhi_diff) 

## Augmented Dickey-Fuller Test  
## alternative: stationary  
##   
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## Type 1: no drift no trend  
##      lag   ADF p.value 
## [1,]   0 -8.19    0.01 
## [2,]   1 -8.33    0.01 
## [3,]   2 -7.24    0.01 
## [4,]   3 -7.11    0.01 
## [5,]   4 -7.23    0.01 
## Type 2: with drift no trend  
##      lag   ADF p.value 
## [1,]   0 -8.18    0.01 
## [2,]   1 -8.32    0.01 
## [3,]   2 -7.23    0.01 
## [4,]   3 -7.11    0.01 
## [5,]   4 -7.22    0.01 
## Type 3: with drift and trend  
##      lag   ADF p.value 
## [1,]   0 -8.16    0.01 
## [2,]   1 -8.30    0.01 
## [3,]   2 -7.21    0.01 
## [4,]   3 -7.09    0.01 
## [5,]   4 -7.20    0.01 
## ----  
## Note: in fact, p.value = 0.01 means p.value <= 0.01 

PP Test 

pp.test(Agra) 

## Phillips-Perron Unit Root Test  
## alternative: stationary  
##   
## Type 1: no drift no trend  
##  lag Z_rho p.value 
##    4 -5.48   0.115 
## -----  
##  Type 2: with drift no trend  
##  lag Z_rho p.value 
##    4 -29.6    0.01 
## -----  
##  Type 3: with drift and trend  
##  lag Z_rho p.value 
##    4 -34.7    0.01 
## ---------------  
## Note: p-value = 0.01 means p.value <= 0.01 

pp.test(Delhi) 

## Phillips-Perron Unit Root Test  
## alternative: stationary  
##   
## Type 1: no drift no trend  
##  lag Z_rho p.value 
##    4  -4.9   0.162 
## -----  
##  Type 2: with drift no trend  
##  lag Z_rho p.value 
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##    4 -32.9    0.01 
## -----  
##  Type 3: with drift and trend  
##  lag Z_rho p.value 
##    4 -37.8    0.01 
## ---------------  
## Note: p-value = 0.01 means p.value <= 0.01 

pp.test(Agra_diff) 

## Phillips-Perron Unit Root Test  
## alternative: stationary  
##   
## Type 1: no drift no trend  
##  lag Z_rho p.value 
##    4 -95.9    0.01 
## -----  
##  Type 2: with drift no trend  
##  lag Z_rho p.value 
##    4 -95.9    0.01 
## -----  
##  Type 3: with drift and trend  
##  lag Z_rho p.value 
##    4 -95.9    0.01 
## ---------------  
## Note: p-value = 0.01 means p.value <= 0.01 

pp.test(Delhi_diff) 

## Phillips-Perron Unit Root Test  
## alternative: stationary  
##   
## Type 1: no drift no trend  
##  lag Z_rho p.value 
##    4   -92    0.01 
## -----  
##  Type 2: with drift no trend  
##  lag Z_rho p.value 
##    4 -92.1    0.01 
## -----  
##  Type 3: with drift and trend  
##  lag Z_rho p.value 
##    4   -92    0.01 
## ---------------  
## Note: p-value = 0.01 means p.value <= 0.01 

Engle-Granger: Long-run relationship of Delhi and Agra Potato market 

To test the Engle-Granger long-run relationships for the Agra and Delhi potato price series, 

first of all both the price series are considered separately as endogenous variables, are simply 

estimated by ordinary least-squares (OLS). The residuals of these long-run relationships are 

stored as objects error.Agra and error.Delhi. An augmented Dickey-Fuller (ADF)-type test is 

applied to the residuals of each equation (coint.Agra and coint.Delhi) for testing whether the 
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variables are cointegrated or not. The test results indicate that both the error series are 

stationary.    

data_EG <- window(cbind(Delhi, Agra), freq=12, start=c(2005, 3)) 
Agra.eq <- lm(Agra~Delhi) 
summary(Agra.eq) 

##  
## Call: 
## lm(formula = Agra ~ Delhi) 
##  
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -460.44  -50.52    9.03   71.76  285.33  
##  
## Coefficients: 
##             Estimate Std. Error t value Pr(>|t|)     
## (Intercept) -4.90279   20.98948  -0.234    0.816     
## Delhi        0.82973    0.02307  35.958   <2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 124.7 on 178 degrees of freedom 
## Multiple R-squared:  0.879,  Adjusted R-squared:  0.8783  
## F-statistic:  1293 on 1 and 178 DF,  p-value: < 2.2e-16 

Delhi.eq <- lm(Delhi~Agra) 
summary(Delhi.eq) 

##  
## Call: 
## lm(formula = Delhi ~ Agra) 
##  
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -302.58  -92.13  -26.96   53.09  601.34  
##  
## Coefficients: 
##              Estimate Std. Error t value Pr(>|t|)     
## (Intercept) 103.87856   22.40629   4.636 6.85e-06 *** 
## Agra          1.05937    0.02946  35.958  < 2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 140.9 on 178 degrees of freedom 
## Multiple R-squared:  0.879,  Adjusted R-squared:  0.8783  
## F-statistic:  1293 on 1 and 178 DF,  p-value: < 2.2e-16 

error.Agra <- ts(resid(Agra.eq), start = c(2005, 3), end = c(2019, 12),  
                 frequency = 12) 
error.Delhi <- ts(resid(Delhi.eq), start = c(2005, 3), end = c(2019, 12),  
                  frequency = 12) 
coint.Agra <- adf.test(error.Agra) 
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## Augmented Dickey-Fuller Test  
## alternative: stationary  
##   
## Type 1: no drift no trend  
##      lag   ADF p.value 
## [1,]   0 -6.07    0.01 
## [2,]   1 -6.30    0.01 
## [3,]   2 -5.05    0.01 
## [4,]   3 -4.78    0.01 
## [5,]   4 -4.58    0.01 
## Type 2: with drift no trend  
##      lag   ADF p.value 
## [1,]   0 -6.05    0.01 
## [2,]   1 -6.28    0.01 
## [3,]   2 -5.02    0.01 
## [4,]   3 -4.75    0.01 
## [5,]   4 -4.55    0.01 
## Type 3: with drift and trend  
##      lag   ADF p.value 
## [1,]   0 -6.18    0.01 
## [2,]   1 -6.53    0.01 
## [3,]   2 -5.29    0.01 
## [4,]   3 -5.06    0.01 
## [5,]   4 -4.89    0.01 
## ----  
## Note: in fact, p.value = 0.01 means p.value <= 0.01 

Coint.Delhi <- adf.test(error.Delhi) 

## Augmented Dickey-Fuller Test  
## alternative: stationary  
##   
## Type 1: no drift no trend  
##      lag   ADF p.value 
## [1,]   0 -6.19    0.01 
## [2,]   1 -6.71    0.01 
## [3,]   2 -5.78    0.01 
## [4,]   3 -5.82    0.01 
## [5,]   4 -5.63    0.01 
## Type 2: with drift no trend  
##      lag   ADF p.value 
## [1,]   0 -6.16    0.01 
## [2,]   1 -6.69    0.01 
## [3,]   2 -5.75    0.01 
## [4,]   3 -5.79    0.01 
## [5,]   4 -5.60    0.01 
## Type 3: with drift and trend  
##      lag   ADF p.value 
## [1,]   0 -6.15    0.01 
## [2,]   1 -6.72    0.01 
## [3,]   2 -5.82    0.01 
## [4,]   3 -5.89    0.01 
## [5,]   4 -5.74    0.01 
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## ----  
## Note: in fact, p.value = 0.01 means p.value <= 0.01 

Engle-Granger: ECM for Agra and Delhi Potato market 

In the next step, the error-correction models (ECMs) for the Agra and Delhi potato markets are 

specified. For this, the necessary first differences of the series and its lagged values are created, 

as well as the series for the error term lagged by one period.  

If two series are cointegrated, then there should be Granger-causation in at least one direction. 

That is, at least one coefficient of the error term should be significant and with the negative 

sign. The coefficient of the error-correction term (error.ecm1) in the error correction model 

(ECM) (‘ecm.eq1’) is -0.032 and is not significant, which means potato price of Delhi market 

does not Granger cause to the Agra market.  On the contrary, the error-correction term 

(error.ecm2) in the ECM (‘ecm.eq2’) is -0.28 and is significant. In other words we can say, 

potato price of Agra market Granger cause to the Delhi market.   

data_ECM <- ts(embed(diff(data_EG), dim=2), freq=12, start=c(2005, 5)) 
colnames(data_ECM) <- c('Delhi.d', 'Agra.d', 'Delhi.d1', 'Agra.d1') 
head(data_ECM) 

##      Delhi.d Agra.d Delhi.d1 Agra.d1 
## [1,]      43    -14      192    94.5 
## [2,]     162    -13       43   -14.0 
## [3,]     145     26      162   -13.0 
## [4,]     -56    -21      145    26.0 
## [5,]     -23      5      -56   -21.0 
## [6,]     118    228      -23     5.0 

error.ecm1 <- window(lag(error.Agra, k=-1), start=c(2005, 5), end=c(2019, 
12)) 
error.ecm2 <- window(lag(error.Delhi, k=-1), start=c(2005, 5), end=c(2019, 
12)) 
ecm.eq1 <- lm(Agra.d~error.ecm1+Agra.d1+Delhi.d1, data = data_ECM) 
summary(ecm.eq1) 

##  
## Call: 
## lm(formula = Agra.d ~ error.ecm1 + Agra.d1 + Delhi.d1, data = data_ECM) 
##  
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -864.93  -60.02   19.25   73.72  250.67  
##  
## Coefficients: 
##             Estimate Std. Error t value Pr(>|t|)     
## (Intercept) -0.62302    9.73472  -0.064   0.9490     
## error.ecm1  -0.03292    0.08886  -0.370   0.7115     
## Agra.d1     -0.23869    0.10443  -2.286   0.0235 *   
## Delhi.d1     0.68941    0.08992   7.667 1.24e-12 *** 
## --- 
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## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 128.9 on 172 degrees of freedom 
## Multiple R-squared:  0.3878, Adjusted R-squared:  0.3772  
## F-statistic: 36.32 on 3 and 172 DF,  p-value: < 2.2e-16 

ecm.eq2 <- lm(Delhi.d~error.ecm2+Agra.d1+Delhi.d1, data = data_ECM) 
summary(ecm.eq2) 

##  
## Call: 
## lm(formula = Delhi.d ~ error.ecm2 + Agra.d1 + Delhi.d1, data = data_ECM
) 
##  
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -843.80  -72.01   19.53   91.84  342.58  
##  
## Coefficients: 
##             Estimate Std. Error t value Pr(>|t|)     
## (Intercept)   1.8644    12.5140   0.149  0.88174     
## error.ecm2   -0.2869     0.1055  -2.720  0.00719 **  
## Agra.d1      -0.1553     0.1326  -1.171  0.24309     
## Delhi.d1      0.4990     0.1187   4.203 4.22e-05 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 165.7 on 172 degrees of freedom 
## Multiple R-squared:  0.2493, Adjusted R-squared:  0.2362  
## F-statistic: 19.04 on 3 and 172 DF,  p-value: 1.041e-10 

Johanson Test of Cointegration 

Johansen and Juselius start by determining the cointegration rank. Before the results of these 

tests are discussed, the arguments of the function ca.jo() should be presented briefly. The test 

type is either eigen or trace for the maximal eigenvalue statistic or the trace statistic, 

respectively, where the default is the former. Whether no deterministic term, a constant, or a 

trend should be included in the cointegration relations can be set by the argument ‘ecdet’. The 

decision as to whether the long-run or transitory form of the VECM should be estimated is 

determined by the argument ‘spec’. The default is spec="longrun". The inclusion of centered 

seasonal dummy variables can be set by providing the corresponding seasonality as an integer; 

e.g., season = 12 for monthly data. 

Trace statistics test results indicate that for the cointegrating rank r=0 test statistics is 39.51 and 

significant, and for r=1 the test statistics is 8.15 and not significant, which means both the price 

series are cointegrated. The similar results are found in the eigen value statistics.   

data_coint <- cbind(Agra, Delhi) 

Trace Statistics 
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coint_trace <- ca.jo(data_coint, type = 'trace', K=2, # The lag order of t
he series (levels) in the VAR 
                     season= 12, # If seasonal dummies should be included, 
the data frequency must be set accordingly, i.e '4' for quarterly data 
                     ecdet= 'none', # Character, 'none' for no intercept i
n cointegration, 'const' for constant term in cointegration and 'trend' fo
r trend variable in cointegration.  
                     spec="longrun") 
 
summary(coint_trace) 

##  
## ######################  
## # Johansen-Procedure #  
## ######################  
##  
## Test type: trace statistic , with linear trend  
##  
## Eigenvalues (lambda): 
## [1] 0.16150106 0.04477755 
##  
## Values of teststatistic and critical values of test: 
##  
##           test 10pct  5pct  1pct 
## r <= 1 |  8.15  6.50  8.18 11.65 
## r = 0  | 39.51 15.66 17.95 23.52 
##  
## Eigenvectors, normalised to first column: 
## (These are the cointegration relations) 
##  
##             Agra.l2 Delhi.l2 
## Agra.l2   1.0000000  1.00000 
## Delhi.l2 -0.8844356 -2.23302 
##  
## Weights W: 
## (This is the loading matrix) 
##  
##            Agra.l2   Delhi.l2 
## Agra.d  -0.4285400 0.02245229 
## Delhi.d -0.1575856 0.06047030 

Eigen value Statistics 

coint_eigen <- ca.jo(data_coint, type = 'eigen', K=2, # The lag order of t
he series (levels) in the VAR 
                     season= 12, # If seasonal dummies should be included, 
the data frequency must be set accordingly, i.e '4' for quarterly data 
                     ecdet= 'none', # Character, 'none' for no intercept i
n cointegration, 'const' for constant term in cointegration and 'trend' fo
r trend variable in cointegration.  
                     spec="longrun") 
                      
summary(coint_eigen) 
## ######################  
## # Johansen-Procedure #  
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## ######################  
## Test type: maximal eigenvalue statistic (lambda max) , with linear tren
d  
## Eigenvalues (lambda): 
## [1] 0.16150106 0.04477755 
## Values of teststatistic and critical values of test: 
##  
##           test 10pct  5pct  1pct 
## r <= 1 |  8.15  6.50  8.18 11.65 
## r = 0  | 31.35 12.91 14.90 19.19 
##  
## Eigenvectors, normalised to first column: 
## (These are the cointegration relations) 
##  
##             Agra.l2 Delhi.l2 
## Agra.l2   1.0000000  1.00000 
## Delhi.l2 -0.8844356 -2.23302 
##  
## Weights W: 
## (This is the loading matrix) 
##  
##            Agra.l2   Delhi.l2 
## Agra.d  -0.4285400 0.02245229 
## Delhi.d -0.1575856 0.06047030 
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Introduction 

The seed of the modern era of neural networks was sown with the pioneering work of 

McCulloch and Pitts in 1943 when they introduced the idea of neural networks as computing 

machines. The major impetus to the growth and development of research and applications in 

the area of neural networks was provided by the development of the back-propagation 

algorithm, a popular learning algorithm for the training of multilayer perceptrons by 

Rumelhart, Hinton and Williams (1986). However, the recent resurgence of interest in this area 

is mainly because neural networks are the fundamental building block of deep learning, which 

is an artificial intelligence function that allows computational models to learn features from 

raw data with multiple levels of abstraction. Presently, artificial intelligence (AI) is a growing 

field and has many practical applications due to the availability of massive data, graphics 

processing units (GPUs) hardware and open source software like python and tensorflow etc.       

Artificial neural networks (ANNs) are non-linear data driven self-adaptive approach as 

opposed to the traditional model-based methods. They are powerful tools for modelling, 

especially when the underlying data relationship is unknown. ANNs can identify and learn 

correlated patterns between input data sets and corresponding target values. After training, 

ANNs can be used to predict the outcome of new independent input data. ANNs imitate the 

learning process of the human brain and can process problems involving non-linear and 

complex data even if the data are imprecise and noisy. Thus, they are ideally suited for the 

modeling of agricultural data which are known to be complex and often non-linear. In recent 

years neural computing has emerged as a practical technology, with successful applications in 

many fields as diverse as finance, medicine, engineering, geology, physics and biology. The 

excitement stems from the fact that these networks are attempts to model the capabilities of the 

human brain. From a statistical perspective neural networks are interesting because of their 

potential use in prediction and classification problems.  

A very important feature of these networks is their adaptive nature, where “learning by 

example” replaces “programming” in solving problems. This feature makes such 

computational models very appealing in application domains where one has little or incomplete 

understanding of the problem to be solved but where training data is readily available. These 
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networks are “neural” in the sense that they may have been inspired by neuroscience but not 

necessarily because they are faithful models of biological neural or cognitive phenomena. In 

fact, majority of the network are more closely related to traditional mathematical and/or 

statistical models such as non-parametric pattern classifiers, clustering algorithms, nonlinear 

filters, and statistical regression models than they are to neurobiology models. 

Neural networks (NNs) have been used for a wide variety of applications where statistical 

methods are traditionally employed. They have been used in classification problems, such as 

identifying underwater sonar currents, recognizing speech, and predicting the secondary 

structure of globular proteins. In time-series applications, NNs have been used in predicting 

stock market performance. As statisticians or users of statistics, these problems are normally 

solved through classical statistical methods, such as discriminant analysis, logistic regression, 

Bayes analysis, multiple regression, and ARIMA time-series models. It is, therefore, time to 

recognize neural networks as a powerful tool for data analysis.  

Basics of a neuron 

An artificial neural network is a set of simple computational units that are highly 

interconnected. The units are also called nodes and loosely represent the biological neuron. A 

graphical presentation of neuron is given in Figure 1. A neuron is an information processing 

unit that is fundamental to the operation of a neural network. The connections between nodes 

are unidirectional and are represented by arrows in the figure. These connections model the 

synaptic connections in the brain. Each connection has a weight called the synaptic weight, 

denoted as 𝑤𝑘𝑗, associated with it. The synaptic weight, 𝑤𝑘𝑗, is interpreted as the strength of 

the connection from the jth unit to the kth unit. Unlike a synapse in the brain, the synaptic 

weight of an artificial neuron may lie in a range that includes negative as well as positive values. 

If a weight is negative, it is termed inhibitory because it decreases the net input. If the weight 

is positive, the contribution is excitatory because it increases the net input. 
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Figure 1: Nonlinear model of a neuron 

The input into a node is a weighted sum of the outputs from nodes connected to it. Each unit 

takes its net input and applies an activation function to it. The neuronal model of Figure 1 also 

includes an externally applied bias, denoted by 𝑏𝑘. The bias 𝑏𝑘 has the effect of increasing or 

lowering the net input of the activation function depending on whether it is positive or negative 

respectively. In mathematical terms, we may describe a neuron k by the following equations  

𝑦𝑘 = 𝜑(𝑣𝑘) = 𝜑 (∑ 𝑤𝑘𝑗𝑥𝑗 + 𝑏𝑘

𝑛

𝑗=1

) 

where 𝑥1, 𝑥2,   .  .  .  , 𝑥𝑛 are the input patterns, 𝑤𝑘1, 𝑤𝑘2,   .  .  .  , 𝑤𝑘𝑛 are the synaptic weights of 

neuron k, 𝑏𝑘 is the bias, 𝜑(. ) is the activation function and 𝑦𝑘 is the output of the neuron. The 

neural networks are built from layers of neurons connected so that one layer receives input 

from the preceding layer of neurons and passes the output on to the subsequent layer.  

Types of activation function 

An activation function which is also known as squashing function, squashes or limits the 

amplitude range of the output of a neuron. It is a mathematical function which converts the 

input to an output, and adds the magic of neural network processing. The abstraction of the 

processing of neural networks is mainly achieved through the activation functions. Activation 

functions give the nonlinearity property to neural networks and make them true universal 

function approximators. Three commonly used activation functions are described below: 

a. Sigmoid Function: The term sigmoid means S-shaped and the logistic form of the sigmoid 

maps the interval (-∞, ∞) onto (0, 1). The main motivation of using this activation function 

is allowing the outputs to be given a probabilistic interpretation. It is defined by  

𝑓(𝑥) =
1

(1 + 𝑒−𝑎𝑥)
 

 where a is the slope parameter of the sigmoid function and is illustrated in Figure 2. 



                                                           Time Series Techniques for Forecasting in Agriculture | CAAST 2021 

 

88 | P a g e  
 

 

 

Figure 2: Sigmoid function 

b. Hyperbolic Tangent: This is a nonlinear function, defined in the range of values (-1, 1) 

and is plotted in Figure 3. This function is defined by 

 

𝑓(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

 

It is established empirically that tanh function provided faster convergence of training 

algorithms than logistic function. Both the logistic and hyperbolic tangent functions differ 

only through a linear transformation. These two were the most common form of activation 

functions used in the construction of neural networks prior to the introduction of rectified 

linear units.  

  

Figure 3: Hyperbolic tangent function 

c. Rectified Linear Unit (ReLU): It is the most used activation function since 2015. It is a 

simple condition and has advantages over the other functions. The function is defined by 

the following formula and is plotted in Figure 4: 
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Figure 4: Rectified Linear Unit 

Neural networks architectures 

An artificial neural network is defined as a data processing system consisting of a large number 

of simple highly inter connected processing elements (artificial neurons) in an architecture 

inspired by the structure of the cerebral cortex of the brain. There are several types of 

architecture of neural networks. However, the two most widely used ANNs are discussed 

below: 

Feed forward networks 

In a feed forward network, information flows in one direction along connecting pathways, from 

the input layer via the hidden layers to the final output layer. There is no feedback (loops) i.e., 

the output of any layer does not affect that same or preceding layer. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: A multi-layer feed forward neural network 

Recurrent networks 

These networks differ from feed forward network architectures in the sense that there is at least 

one feedback loop. Thus, in these networks, for example, there could exist one layer with 

feedback connections as shown in figure below. There could also be neurons with self-feedback 

Input layer 

 

Hidden layer 

 

Output layer 
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links, i.e. the output of a neuron is fed back into itself as input. 

 

  

 

 

 

 

 

 

 

Figure 6:  A recurrent neural network 

Learning/Training methods 

Learning methods in neural networks can be broadly classified into three basic types: 

supervised, unsupervised and reinforced. 

Supervised learning 

In this, every input pattern that is used to train the network is associated with an output pattern, 

which is the target or the desired pattern. A teacher is assumed to be present during the learning 

process, when a comparison is made between the network’s computed output and the correct 

expected output, to determine the error. The error can then be used to change network 

parameters, which result in an improvement in performance. 

Unsupervised learning 

In this learning method, the target output is not presented to the network. It is as if there is no 

teacher to present the desired patterns and hence, the system learns of its own by discovering 

and adapting to structural features in the input patterns. 

Reinforced learning 

In this method, a teacher though available, does not present the expected answer but only 

indicates if the computed output is correct or incorrect. The information provided helps the 

network in its learning process. A reward is given for a correct answer computed and a penalty 

for a wrong answer. Reinforced learning was not one of the popular forms of learning but 

gaining importance in case of deep learning. 

Input layer Hidden layer Output layer 
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Development of an ANN model 

The various steps in developing a neural network model are: 

A. Variable selection 

The input variables important for modeling variable(s) under study are selected by 

suitable variable selection procedures. 

 

B. Formation of training, testing and validation sets 

The data set is divided into three distinct sets called training, testing and validation sets. 

The training set is the largest set and is used by neural network to learn patterns present in the 

data. The testing set is used to evaluate the generalization ability of a supposedly trained 

network. A final check on the performance of the trained network is made using validation set.  

 

C. Neural network architecture 

Neural network architecture defines its structure including number of hidden layers, 

number of hidden nodes and number of output nodes etc.  

• Number of hidden layers: The hidden layer(s) provide the network with its ability to 

generalize. In theory, a neural network with one hidden layer with a sufficient number of 

hidden neurons is capable of approximating any continuous function. In practice, neural 

network with one and occasionally two hidden layers are widely used and have to perform 

very well. 

• Number of hidden nodes: There is no magic formula for selecting the optimum number 

of hidden neurons. However, some thumb rules are available for calculating number of 

hidden neurons like for a three layers network with n input and m output neurons, the 

hidden layer would have sqrt(n*m) neurons. 

• Number of output nodes: Neural networks with multiple outputs, especially if these 

outputs are widely spaced, will produce inferior results as compared to a network with a 

single output. 

•  Activation function: As mentioned earlier, activation functions are mathematical 

formulae that determine the output of a processing node. Each unit takes its net input and 

applies an activation function to it. The purpose of the transfer function is to prevent 

output from reaching very large value which can ‘paralyze’ neural networks and thereby 

inhibit training. Now the default recommendation is to use rectified linear units as 
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activation function for network learning.   

D. Evaluation criteria  

         For regression problems, the sum of squares error function is commonly used in neural 

networks. The cross-entropy loss function is commonly used in case of classification problem.  

E. Neural network training 

Training a neural network to learn patterns in the data involves iteratively presenting it with 

examples of the correct known answers. The objective of training is to find the set of weights 

between the neurons that determine the global minimum of error function. This involves 

decision regarding the number of iterations i.e., when to stop training a neural network and the 

selection of learning rate (a constant of proportionality which determines the size of the weight 

adjustments made at each iteration) and momentum values (how past weight changes affect 

current weight changes). 

Conclusion 

The computing world has a lot to gain from neural networks. Their ability to learn by example 

makes them very flexible and powerful. A large number of claims have been made about the 

modeling capabilities of neural networks, some exaggerated and some justified. Hence, to best 

utilize ANNs for different problems, it is essential to understand the potential as well as 

limitations of neural networks. For some tasks, neural networks will never replace conventional 

methods, but for a growing list of applications, the neural architecture will provide either an 

alternative or a complement to these existing techniques. Finally, I would like to conclude that 

the performance of traditional/shallow neural networks depend on the feature of the data 

provided by the domain experts. This limitation inspired another subset of neural networks 

called deep neural networks (DNNs). DNNs extend traditional ANNs by adding multiple 

processing layers between input and output layers into the model that allows hierarchical 

representation of raw data through several layers of abstraction. 
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What is Artificial Intelligence(AI) 

Artificial intelligence (AI) is a branch of computer science concerned with building smart 

machines capable of performing tasks that typically require human intelligence. These artificial 

intelligence systems are powered by machine learning, some of them are powered by deep 

learning and some of them are powered by very boring things like rules. AI initiates common 

sense, problem-solving and analytical reasoning power in machines, which is much difficult 

and a tedious job 

• An intelligent entity created by humans 

• Capable of performing tasks intelligently without being explicitly instructed 

• Capable of thinking and acting rationally and humanely 

 

 

Machine Learning  

Artificial Intelligence and Machine Learning are much trending and confused terms nowadays. 

Artificial intelligence is a set of algorithms and intelligence, to try to mimic human intelligence. 

Machine learning is one of them, and deep learning is one of those machine learning 

techniques. A computer program is said to learn from experience (E) with respect to some task 

mailto:Dr.chikkamath@gmail.com
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(T) and some performance measure (P), if its performance on T, as measured by P, improves 

with experience E then the program is called a machine learning program - Tom Mitchell. The 

ML algorithms use Computer Science and Statistics to predict rational outputs 

Algorithms and Learning techniques 

Supervised learning techniques 

• Linear classifier (numerical functions) 

• Parametric (Probabilistic functions) 

• Naïve Bayes, Gaussian discriminant analysis (GDA), Hidden Markov models 

(HMM), Probabilistic graphical models 

• Non-parametric (Instance-based functions) 

• K-nearest neighbors, Classification and regression tree (CART), Decision tree 

• Aggregation or Ensemble 

• Bagging (bootstrap + aggregation), Boosting, Stacking 
  

Unsupervised learning techniques 

• Clustering 

• K-means clustering 

• Spectral clustering 

• Density Estimation 

• Gaussian mixture model (GMM) 

• Graphical models 

• Dimensionality reduction 

• Principal component analysis (PCA) 

• Factor analysis 

•       Reinforcement learning 

• Decision making (robot, chess machine) 

 

Deep Learning 

• Deep learning is a machine learning technique that teaches computers to do what comes 

naturally to humans: learn by experience and example. Similarly, the deep learning 

algorithm would perform a task repeatedly, each time tweaking it a little to improve the 

outcome 

• Deep learning deals with algorithms inspired by the structure and function of the brain 
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called artificial neural networks. It mirrors the functioning of our brains 

• Deep learning algorithms are like how nervous system structured where each neuron 

connected each other and passing information 

• Deep learning is the name we use for “stacked neural networks”; that is, networks 

composed of several layers - Deep learning is about neural network 

• Deep Learning means using a neural network with several layers of nodes between input 

and output 

 

Why deep learning ? 

• Deep learning achieves accuracy at higher levels than ever before 

• Deep learning outperforms humans in some tasks like classifying objects in images 

• As the amount of data increases, the performance of traditional learning algorithms, like 

SVM and logistic regression, does not improve by a whole lot. In fact, it tends to plateau 

after a certain point. In the case of neural networks, the performance of the model increases 

with an increase in the data you feed to the model 

• Feature extraction is done by human in machine learning whereas deep learning model 

figure out by itself 

• The amount of data we generate every day is staggering—currently estimated at 2.6 

quintillion bytes. This increase in data creation is one reason that deep learning capabilities 

have grown in recent years. 

• Stronger computing power that’s available today - Deep learning requires substantial 

computing power. High-performance GPUs have a parallel architecture that is efficient for 

deep learning. When combined with clusters or cloud computing, this enables development 

teams to reduce training time for a deep learning network from weeks to hours or less. 
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Deep Learning - Neural Network Representation 

 

Weights 

𝒉 = 𝝈(𝐖𝟏 𝒙 + 𝒃𝟏) 

𝒚 =       𝝈(𝑾𝟐𝒉 + 𝒃𝟐) 

Activation functions 
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4 + 2 = 6 neurons (not counting inputs) 

[3 x 4] + [4 x 2] = 20 weights 

4 + 2 = 6 biases 

26 learnable parameters 

 

How deep learning works 

 

• A neural network is composed of input, hidden, and output layers — all of which are 

composed of “nodes”. Input layers take in a numerical representation of data (e.g. 

images with pixel specs), output layers output predictions, while hidden layers are 

correlated with most of the computation 

• The major points to keep note of here are the tunable weight and bias parameters —

 represented by w and b respectively in the function. These are essential to the actual 

“learning” process of a deep learning algorithm 

• After the neural network passes its inputs all the way to its outputs, the network 

evaluates how good its prediction was (relative to the expected output) through 

something called a loss function. As an example, the “Mean Squared Error” loss 

function 

• The goal of network is ultimately to minimize this loss by adjusting the weights and 

biases of the network. In using something called “back propagation” through gradient 

descent. 

• The network backtracks through all its layers to update the weights and biases of every 

node in the opposite direction of the loss function — in other words, every iteration of 

back propagation should result in a smaller loss function than before. 

• The continuous updates of the weights and biases of the network ultimately turns it into 

a precise function approximator — one that models the relationship between inputs and 

expected outputs. 
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Types of Neural Networks 

 

1. Feedforward Neural Network - Here data or the input travels in one direction. The data 

passes through the input nodes and exit on the output nodes. This neural network may or 

may not have the hidden layers. Used in computer vision and speech recognition. 

2. Radial Basis Function Neural Network - Radial basic functions consider the distance of 

a point with respect to the center 

3. Multilayer Perceptron - A multilayer perceptron has three or more layers. Every single 

node in a layer is connected to each node in the following layer. A multilayer perceptron 

uses a nonlinear activation function (mainly hyperbolic tangent or logistic function) 

4. Modular Neural Network - A modular neural network has a number of different networks 

that function independently and perform sub-tasks. A large and complex computational 

process can be done significantly faster by breaking it down into independent components 

5. Recurrent Neural Network(RNN) – Long Short Term Memory 

• Works on the principle of saving the output of a layer and feeding this back to the input 

to help in predicting the outcome of the layer 

• Here, the first layer is formed similar to the feed forward neural network with the 

product of the sum of the weights and the features 

• The recurrent neural network process starts once this is computed, this means, from one 

time step to the next each neuron will remember some information it had in the previous 

time-step. This makes each neuron act like a memory cell in performing computations. 

In this process, neural network works on the front propagation and remember what 

information it needs for later use 
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• Here, if the prediction is wrong we use the learning rate or error correction to make 

small changes so that it will gradually work towards making the right prediction during 

the back propagation 

• It is used in text to speech(TTS) conversion models. Natural language processing – 

Entity tagging, Time Series Forecasting 

 

 
6. Convolutional Neural Network(CNN) 

 

• In a convolutional neural network the unit connectivity pattern is inspired by the 

organization of the visual cortex. Units respond to stimuli in a restricted region of space 

known as the receptive field 

• Receptive fields partially overlap, over-covering the entire visual field 

• CNN uses a variation of the multilayer perceptrons 

• A CNN contains one or more than one convolutional layers. These layers can either be 

completely interconnected or pooled 

• In this neural network, the input features are taken in batch wise like a filter. This will 

help the network to remember the images in parts and can compute the operations. 

These computations involve conversion of the image from RGB or HSI scale to Gray-

scale. Once we have this, the changes in the pixel value will help detecting the edges 

and images can be classified into different categories 

• Used in image and video recognition and Signal processing 
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Choice of Deep Neural Network 

RBM- Restricted Boltzmann Machine  

RNTN – Recursive Neural Tensor Network  

NER, Sentiment analysis etc 

DBN – Deep Belief Network 
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Deep Learning Platforms and Libraries 

 

Platforms – Lot are available 

• Ersatz Labs 

• H2o.ai 

• Dato Graphlab 

Libraries 

• Theono 

• Caffe 

• Tensorflow 

• Torch 

• Deeplearning4j 

AI in Agriculture 

Forms 

• Robot 

• Drone 

• Apps- Mobile apps
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Data Collection 

 

 
 

Data Annotation 

 

   
 

Training Model and Validation 
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Model Implementation 

 
 

Industry Application of AI and ML in Agriculture  

  

• Weed Control - Blue River Technology has developed a robot called See & Spray 

which reportedly leverages computer vision to monitor and precisely spray weeds on 

cotton plants. 

• The company claims that its precision technology eliminates 80 percent of the volume 

of chemicals normally sprayed on crops and can reduce herbicide expenditures by 90 

percent 
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Monitoring soil and crop in real-time - An AI-based application called Plantix uses image 

recognition-based technology that helps farmers identify nutrient deficiencies in soil, plant 

pests and other diseases. With the help of Plantix, farmers can easily figure out which fertilizer 

to use in order to improve the quality of the harvest. The app also provides tips and solutions 

for the detected problems. 

Using drones for data collection - PrecisionHawk allows farmers to virtually walk around 

their fields with the help of drones. Farming operations of all sizes either big or small, are using 

drones to reduce the time and costs associated with crop data collection 
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Predicting the weather - IBM weather forecast sends out alerts in case of weather disruptions 

and provides integrated solutions to help maximize crop yields, minimize environmental 

impact and reduce costs 

AI powered robots - Agrobot robots have the ability to operate 24/7 which increases the 

efficiency, optimizes the cost of precision to weed, hoe, and harvest. The Argobot E-series with 

advanced AI system not only picks up the crops but it can also identify the ripeness of the crop 

in the field. 

 

References 
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At the best of times, data science can be complicated, opaque, and dense with jargon, especially 

for those just starting to learn about it. This, at least, was my experience entering the field as a 

student intern for Wegaw with relatively limited prior knowledge in the details of how exactly 

you’re supposed to do something with a dataset. 

However, with some research, the very helpful guidance of someone more experienced, some 

understanding of high-school statistics, and a few very useful Python libraries, I was ultimately 

able to make a couple of reasonably good predictions. Described below is the complete process 

I went through to get these predictions, in the hope that someone in the position I was in about 

a month ago will find it useful. 

The data of interest in this case is the snow depth in certain measuring sites in British Columbia 

(BC). Predictions of future snow depth through methods like those described below can be a 

piece of a larger puzzle of tracking snowfall and snowmelt patterns in the region. That being 

said, a similar process can be used for almost any kind of data. 

Aiken Lake, British Columbia, Canada 

Finding the Data 

Thankfully, this was the easy part. Like most developed countries with any amount of snowfall, 

Canada has a government agency that keeps reasonably good records of snowfall over time. In 

this case, the provincial government of BC has publicly available snow data that can be 

downloaded here. 

This is the part of the article where I have to stress the principle of “Garbage In, Garbage Out”. 

It’s absolutely vital when doing this kind of work that relatively clean and reliable data be chosen 

so that results are accurate. It might therefore be worth going through a couple of different 

datasets to find ones without significant gaps: problems with the data can be fixed, but you can’t 

make data appear from thin air. 

mailto:lalithuas@gmail.com
https://aqrt.nrs.gov.bc.ca/Data/Export
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For this project, since I was intending to create a multivariate model, I picked three datasets 

measuring snow depth, temperature, and snow water content on an hourly basis from a single 

station near Aiken Lake, BC. The Aiken Lake data was in csv format, which I dealt with using 

the pandas library in Python. 

Cleaning the Data 

This was by far the most arduous process in the entire project, not necessarily because it was 

the most technical, but because it was the least interesting. 

The first thing I did was get rid of all NaN values from the dataset; even the best datasets will 

have a couple, and getting rid of them meant working with only numerical data going forward. 

To do this, two options presented themselves: I could either delete the rows containing NaN 

values, or just replace all NaN values with the mean of the previous two values. I chose the latter 

solution based on the assumption that the weather wasn’t likely to vary significantly from one 

hour to the next. Since there weren’t too many continuous NaN values, this wasn’t a problem. 

Having done this, we can finally look at our data for the very first time: 

 

 

Uncleaned snow depth over time data 

Not very pretty. 
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The first thing that stands out is the extreme variation, in both the positive and negative 

directions. By scrolling through the raw data in Excel, it became obvious that this stemmed from 

an error with the order of magnitude of the data: instead of 8,000 cm of snow, there was really 

only 80. 

The first step to fixing this was to take the absolute value of all the data; getting negative values 

for snow depth seemed unlikely. The next step was trying to find the right power of 10 to 

multiply/divide any outliers by so that they fell in line with the rest of the data. 

Finding the outliers themselves wasn’t the main issue: because I was dealing with an order of 

magnitude problem, I assumed (probably correctly) that if the depth of the snow increases or 

decreases by a factor of 10 within an hour, something’s gone wrong. 

The slightly harder part was figuring out what the order of magnitude is supposed to be. This is 

a relatively easy task for a person looking through the file in Excel, but a somewhat harder one 

to program efficiently. This is because the snow data I used is precise to the millimetre, which 

means that it ranges from 0.1 cm all the way up to about 120 cm: four orders of magnitude. 

The solution I ended up implementing is as follows: if a correction is in order, Python checks if 

the previous value was corrected. If it was, it corrects the current value by the same amount as 

it corrected the previous one. Otherwise, it assumes that the order of magnitude of the previous 

value is the same as the true order of magnitude of the current value. This solution breaks if 

consecutive values are wrong by different orders of magnitude, but this approach was the 

simplest one I tested which still worked consistently. 

The final correction I had to make was to remove any outliers (defined as values more than 3 

standard deviations away from the mean) from the data that didn’t seem to be caused by any 

issues in the order of magnitude of the measurement; these were just random values that 

appeared in the data for no apparent reason. These were dealt with in the same way as NaN 

values: by replacing the outlier with the mean of the two previous values. 

Having done all this to each of the three datasets, the cleaned data looks like this: 
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Cleaned snow depth, temperature, and snow water content data from Aiken Lake station 

(Note: the temperature here is in Kelvin in order to keep the values from all the datasets positive. 

This made cleaning them easier.) 

Using the handy pandas.DataFrame.merge() function, I combined and downloaded these as one 

csv file. 

Preparing the Data 

Before running the models, however, there is one final matter I had to attend to. Almost all 

classical statistical models, including the ARMA and VAR models that I ended up using, require 

a stationary time series. Effectively, this means that the time series can’t have any time-

dependant patterns or trends (a more detailed explanation of the concept of seasonality can be 

found here). 

Looking at the data, it’s pretty obvious that a seasonal pattern is at play here; this is what we 

would expect from meteorological data like this. While it is possible to run seasonal ARMA 

models, they’re pretty power intensive, and the seasonality must be corrected for the VAR 

model to work properly anyway. This is most easily done by subtracting each value in the dataset 

from the value it had a year prior (eg. snow depth on the 1st of January 2021 at 00:00:00 is now 

equal to itself minus the snow depth on the 1st of January 2020 at 00:00:00). This is a process 

known as seasonal differencing. 

Unfortunately, this means that the first year of our data is unusable, but there is still enough 

remaining for the models to train on. 

The stationary data looks like this: 

 

https://www.itl.nist.gov/div898/handbook/pmc/section4/pmc442.htm
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Snow depth, temperature, and snow water content data with seasonality removed 

To make absolutely sure the data was stationary, I ran a unit root test on each dataset. I used the 

augmented Dickey-Fuller test provided by the statsmodels library 

(statsmodels.tsa.stattools.adfuller()), although other options are available and equivalent. 

For each of the datasets, the Dickey-Fuller test rejected the hypothesis that they have a unit root, 

implying that the data is stationary. More information on how unit root tests work and how they 

can be implemented can be found here. 

I was now ready to run the models! 

Modelling the Data 

I used three approaches to try to forecast snow depth: a classical univariate, classical 

multivariate, and neural network approach. For each of these, different models was used. 

Classical Univariate: ARMA 

An ARMA (Autoregressive Moving Average) model uses past values of the dataset to forecast 

future values of the same dataset by combining different models into one. Consequently, I only 

used snow depth data for this model, since that’s what I wanted to predict. 

Fully understanding what each component of the ARMA model does is essential in picking the 

right hyperparameters. Autoregressive (AR) models are models which use previous values to 

predict future values. For our purposes, the important thing we have to keep track of is how 

many previous values are used, also called the “order” of the model. As an example, an order 3 

autoregressive model would use the three previous values of the dataset to predict the next one. 

(For more details, here’s a website I found useful.) 

https://machinelearningmastery.com/time-series-data-stationary-python/
https://otexts.com/fpp2/AR.html


                                                           Time Series Techniques for Forecasting in Agriculture | CAAST 2021 

 

113 | P a g e  
 

In a similar way, a moving average (MA) model uses past errors in the model to predict future 

values. Once again, the “order” of the model refers to how many steps you take back in time in 

order to predict the next value. (For more details, the same website as above has a pretty good 

explanation of MA models as well.) 

An ARMA model is a combination of an AR and MA model, and requires two hyperparameters 

to work: the order of the AR model (p) and the order of the MA model (q), written as ARMA(p, 

q). Although there are more technical and systematic ways to pick these two hyperparameters, 

the easiest is to just try out a bunch of values and see which ones work best. For this, however, 

I had to start coding. 

As with most statistical models, I was able to find a library that did most of the heavy lifting for 

me: the statsmodels.tsa.arima.model.ARIMA() class, which takes as parameters a time series 

and an order in the form of a tuplet (p, d, q). 

While this (an ARIMA model) is not the same as an ARMA model, we can set d equal to zero, 

and keep p and q as the orders of the AR and MA models respectively to create an ARMA 

model. If the data I used wasn’t stationary, I would have had to consider d more carefully, but 

the seasonal differencing was enough in this case to ensure stationarity. 

I then split the dataset into train and test data, choosing the arbitrary cut-off point of January 1st, 

2021, and applied the model to my train data. Testing a couple different values of p and q, and 

using RMSE to measure the quality of each resulting model, I arrived on an ARMA(1, 2) model 

as my solution. 

Once the model was fitted, all I had to do was undo the seasonal differencing by adding the 

value of the previous year to each data point. This gives the following results: 

 

 

https://otexts.com/fpp2/MA.html
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Results for ARMA model predicting snow depth 

Pretty good! 

Classical Multivariate: VAR 

A vector autoregression model is like an autoregression model but using several time series to 

predict each other. In this case, I used past values of snow depth, temperature, and snow water 

content to make predictions about future values of snow depth. Like an AR model, it has an 

“order”, referring to how many previous values of each time series it will consider. 

The actual programming is not too different from the ARMA: I once again divided the datasets 

into train and test, the only difference being all three time series were used instead of only snow 

depth. These help predict snow depth, assuming that they are all correlated with each other 

(which, looking at their plots above, they seem to be). 

Like with the ARMA model, I used the statsmodels.tsa.api.VAR() class to make predictions. 

Even more conveniently than the ARMA model, the statsmodels VAR class allows you to input 

a maximum order for the model, and simply checks every order for the model until that value, 

picking the right one using an information criterion that must be specified (I used the AIC, but 

others are available). These effectively judge the quality of the model by trying to balance the 

quality of the predictions and the quantity of parameters (to prevent overfitting). 

The final step was to correct the seasonal differencing, and I got the following predictions: 

 

 

Results for VAR model predicting snow depth 

(Note: since snow depth was what I was primarily interested it, that’s the only thing I plotted 

but the VAR model makes predictions for each one of the time series I inputted.) 
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The most striking thing about this model when compared to the ARMA model is its extreme 

degree of similarity. Because they have (slightly) different RMSEs, it’s clear that different 

models were run, but the extreme similarity does indicate that something may have gone wrong. 

My guess is that the other time series added to the model (temperature, snow water content) 

were not sufficiently correlated with snow depth, so the model treated them as insignificant and 

basically just ran an autoregression model on the snow depth data. 

In any case, however, a RMSE of about 13 cm is also pretty good in this case too. 

ARMA model predicting snow depth for the next month 

It’s hard to know whether scaling up the problem for the LSTM (six or seven months, rather 

than just one) will result in the same quality of prediction, but doing so requires more time and 

computing power than I currently have on my hands. However, I think that, at least on this scale, 

this implementation of an LSTM can definitely be considered successful. 

Conclusion 

Before the end of the article, I just wanted to mention some generally useful tips for anyone 

who’s interested in starting. 

• If you ever find yourself thinking “why hasn’t someone already written a method for this?” 

someone probably already has. 

When I first started, I spent about three hours creating and testing a function that takes a string 

and turns into a datetime.datetime() object, before discovering the 

pandas to_datetime() method. Don’t make the same mistake I did. 

• Understand the models you’re using 

There are many, many websites and tutorials explaining the models described above with 

examples that you can very easily copy-paste into your IDE. This is fine, as long as you don’t 

then spend a few hours guessing different hyperparameters without even knowing what order 

of magnitude they’re supposed to be. 

• Don’t be afraid to use other people’s work 

This is probably the most important piece of advice I’d give to someone just starting: someone 

more experienced than you has already done a lot of the hard part for you. There are dozens of 

different libraries that do most of the technical computational part of the process behind the 
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scenes. As long as you learn to use them properly, and have a vague understanding of what you 

need to do to make them work, you should implement them in whatever way you find useful. 

The process of finding out more about data science and modelling through practical examples 

like these has been incredibly interesting and intellectually stimulating, and I would recommend 

to anyone interested in this field to start by getting some real data and working with it in a way 

similar to what I did. 

Finally, I want to thank everyone at Wegaw for this opportunity, but especially Daria Ludtke 

for organising the internship, and Thomas James for his patience in taking me through some of 

the more complicated parts of the process. 
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