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About NAHEP-CAAST at ICAR-IARI, New Delhi 

Centre for Advanced Agricultural Science and Technology (CAAST) is a new initiative and student 

centric subcomponent of World Bank sponsored National Agricultural Higher Education Project 

(NAHEP) granted to the Indian Council of Agricultural Research, New Delhi to provide a platform for 

strengthening educational and research activities of post graduate and doctoral students. The ICAR-

Indian Agricultural Research Institute, New Delhi was selected by the NAHEP-CAAST programme. NAHEP 

sanctioned Rs 19.99 crores for the project on “Genomic assisted crop improvement and management” 

under CAAST programme. The project at IARI specifically aims at inculcating genomics education and 

skills among the students and enhancing the expertise of the faculty of IARI in the area of genomics.  

Objectives 

1. To develop online teaching facility and online courses for enhancing the teaching and learning

efficiency, and scientific communications skills

2. To develop and/or strengthen state-of-the art next-generation genomics and phenomics facilities

for producing quality PG and Ph.D. students

3. To develop collaborative research programmes with institutes of international repute and

industries in the area of genomics and phenomics

4. To enhance the skills of faculty and PG students of IARI and NARES

5. To generate and analyze big data in genomics and phenomics of crops, microbes and pests for

genomics augmentation of crop improvement and management

IARI’s CAAST project is unique as it aimed at providing funding and training support to the M.Sc. and 

Ph.D. students from different disciplines who are working in the area of genomics. It will organize 

lectures and training programmes, and send IARI students and covering students from several 

disciplines. It will provide opportunities to the students and faculty to gain international exposure. Further, 

the project envisages developing a modern lab named as Discovery Centre that will serve as a common 

facility for students’ research at ICAR-IARI.  
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Preface 

Driven by the recent developments in plant/animal/fish genome projects, bioinformatics and genomics are 
taking an ever increasing role in agricultural sciences. In a similar way, advances in information technology 
and computational methods are driving the mathematical sciences forward. Now with the availability of new 
genome sequencing technologies, advanced statistical techniques and powerful computational algorithms, 
it is possible to handle and analyze very high dimensional omics data (genomic, proteomic and phenomic). 
Moreover, R and other open source tools are highly useful to analyze high-dimensional data emerging form 
genomics and phenomics projects. Thus an integrated approach is essential at these cross-roads to 
understand the underlying biological phenomena of complex traits. Above all, there exists always a rapid 
increasing demand for individuals to be trained in bioinformatics with special skills and knowledge to handle 
high dimensional genome data. Keeping this in view, the present training programme on “High 
Dimensional Genome Data Analysis by R and Open Source Tools” is being organized for the students 
of SAUs/CAUs/ICAR-DUs pursuing post graduate degree programmes in Agriculture across the country.  
 
The statistical and computational algorithms and approaches discussed in this reference manual will 
acquaint the participants with the recent advances taken place in the field of High Dimensional Genome 
Data Analysis. This training will help the students in upgrading their analytical skills, especially in the area 
of Genomics Assisted Crop Improvement and Management. Knowledge acquired during this training 
programme will be immensely helpful to the young participants to enhance their preparedness to tackle 
future challenges in the fields of genomics, proteomics and phenomics. Thus, the present training is being 
organized with the aim to (i) train post graduate students in handling high dimensional -omics data (ii) 
familiarize the students with R and other open source software for analysis of -omics data (iii) upgrade 
analytical skills of the participants. 
 
Here, we wish to express our heartfelt gratitude to the faculty members, drawn from within and outside the 
Institute, for providing us with the reading materials in time. Our best wishes to all the students who have 
come from different SAUs/CAUs/ICAR-DUs, without whom conduct of the course would not have been a 
reality. Our sincere thanks and acknowledgements to the World Bank Funded National Agricultural 
Higher Education Project (NAHEP) for providing us the funds to organize the training programme under 
the sanctioned project: Genomics Assisted Crop Improvement and Management. The help support and 
guidance provided from time to time by our Research Managers from the Council; National Director and 
National Coordinator (CAAST) of NAHEP; Director, Joint Director (R), Dean & Joint Director (Education), 
Dr. Viswanathan, C., PI, Core Team Members and Associated Members of NAHEP-CAAST project 
implemented at IARI, Director, IASRI and Head, Centre for Agricultural Bioinformatics are sincerely 
acknowledged. We are particularly grateful to Mrs. Manjeet Kaur, Chief Technical Officer, Dr. Tanmaya 
Kumar Sahu and Mrs. Sarika Sahu, Research Associates, Mrs. Shivangi Varshney, Senior Research 
Fellow, Mr. Subhrajit Satpathy, Ph.D. scholar for helping us in conducting this training programme.  
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High Dimensional Genome Data Analysis  

 

Advances in information technology and computational methods have drived the mathematical 

sciences forward. In particular, Artificial Intelligence and Big Data analytics have 

revolutionized the bioinformatics-based genome data analysis. High-throughput genome 

technologies have made it possible to generate massive -omics data for understanding the 

complex phenomena involved in biological systems. With the availability of next generation 

sequencing (NGS) technologies, voluminous structured and unstructured data is now available. 

High-dimensional genomic data analysis is also challenging due to presence of noise and 

biases. Thus, computational analysis of such high-dimensional data often includes 

identification and correction of hidden biases, dimensionality reduction and application of AI 

/ machine learning techniques for mining the hidden information to answer unsolved problems. 

Moreover, combined analysis of high dimensional genomic data from various sources to 

interpret the biological insights is highly difficult. High-dimensional genomic data usually 

presented as a matrix, with each column representing a sample and each row representing a 

genomic feature (for example, a gene, a genomic locus and so on). By computational 

analyses of these high-dimensional data matrices using dimension reduction techniques like, 

principal component analysis or clustering approaches, can help learn characteristic 

information within samples and identify key features between samples to interrogate 

biological functions. Computational methods like, Matrix Analysis and Normalization By 

Concordant Information Enhancement (MANCIE) that uses  Bayesian-supported principal 

component analysis-based approach to adjust the data for bias correction and data integration 

of distinct genomic profiles on the same samples are now available in literature. Such methods 

can improve tissue-specific clustering, prognostic prediction in Molecular Taxonomy, copy 

number and expression agreement in Cell Line data, and has broad applications in high-

dimensional data integration. 

With the advent of cost effective technologies, more than one data matrices can be generated 

from multiple platforms of experiments on the same set of samples. Integrative analysis of such 

data sets is critical for obtaining biological insights, within which a common challenge exists 

in identifying and correcting hidden biases. Several methods have been developed to remove 

batch effect within one data matrix of the same platform. Sparse PCA uses the linear 

combination of a small subset of variables instead of all to generate the principal components 

and still explains most variances present in the data, while making the dimension reduction and 

bias removal clearer and easier to interpret. In a similar way, Surrogate variable analysis 

(SVA) models the gene-expression heterogeneity bias as ‘surrogate variables’ and separate 

them from primary variables that capture biologically meaningful information.  
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Statistical and computational analyses of biological sequences have completely changed their 

character since late 1980s. As more and more genome projects are coming up the emphasis has 

now been shifted from accumulation of such data to its interpretation. Statistical and 

computational tools for classifying sequences, detecting similarities, discriminating protein 

coding regions from non-coding regions in DNA sequences, identification of transcription 

binding sites, predicting molecular structure, molecular marker based classification of 

genotypes, etc, have become an essential component of biological research process. 

Bioinformatics is emerging at the frontier as an integrated discipline among biology, computer 

science and statistics, impacting medicine, agriculture, biotechnology, and society in many 

ways. Large amount of biological information has created both challenging data mining 

problems and opportunities, each requiring new ideas. Due to complex nature of biological 

system the conventional computer algorithms are unable to address many of the important 

sequence analysis problems.  Artificial Intelligence, in general, and Machine Learning and deep 

learning, in specific, are ideally suited for domains characterized by the presence of large 

amounts of data, noisy patterns, and the absence of general theories.  The fundamental idea 

behind these approaches is to learn the theory from data, through a process of inference, model 

fitting, or learning from examples.  Thus they form a viable complementary approach to 

conventional methods.     

Machine learning methods are computationally intensive and benefit greatly from progress in 

computer speed. To the novice, machine learning methods may appear as a bag of unrelated 

techniques.  On the theoretical side, a unifying framework for all machine learning methods 

has also emerged since the late 1980s.  This is the Bayesian probabilistic framework for 

modelling and inference. In fact, it is the confluence of all the three factors – data, computers 

and statistical theory – that is fuelling the machine learning expansion in high dimensional 

genome data analysis and elsewhere.  An often met criticism of machine learning techniques 

is that they are “back box” approaches: one can not always pin down exactly how a complex 

Neural Network or Hidden Markov Model (HMM), reaches a particular answer. It is important 

to realize, however, that many other techniques in contemporary molecular biology are used 

on a purely empirical basis. Once a parameterized model M(w) for the data has been 

constructed, machine learning algorithms can be explained with the steps: (i) the estimation of 

the complete distribution P(w,D) and the posterior P(w|D) (ii) the estimation of the optimal set 

of  parameters w by maximizing P(w|D), the first level of Bayesian inference (iii) The 

estimation of marginals and expectations with respect to the posterior, that is, for instance, of 

integrals of the form  ;dw)D|w(P)w(f)f(E  the higher levels of Bayesian inference. 

Machine learning is the analysis step in the process of Knowledge Discovery in Databases that 

results in the discovery of new patterns in large data sets. Various machine learning related 

techniques are Artificial Neural Network (ANN), Hidden Markov Model (HMM), Gibbs 

sampling, Support Vector Machines (SVM) and Random Forest etc. These techniques are 
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extensively used in genomics research. HMMs are very well suited for many tasks in molecular 

biology. HMMs are similar to Markov chain, but are more general and flexible, and allows to 

model phenomena that cannot be explained well with a regular Markov chain model.  The most 

popular use of HMM in molecular biology is as a ‘probabilistic pro-file’ of a protein family, 

which is called a profile HMM. From a family of proteins (or DNA) a profile HMM can be 

made to search a database for other members of the family. HMMs are suitable for gene finding 

where several signals must be recognized and combined into a prediction of exons and introns, 

and the prediction must conform to various rules to make it a reasonable gene prediction.   

Completion of human, plant and animal genomes have demonstrated that genomic sequence 

is the most comprehensive way towards gene discovery - a first step towards identifying the 

role of each gene. Comprehensive understanding of gene function will require thorough 

investigations of their own genomes to identify all of their genes and to determine the 

function of those genes. However, SNPs are distributed widely over these genes and the 

functions of these genes are associated with the population characteristics. As the next 

generation sequencing technologies are available, it becomes possible to get genome wide 

SNPs data and identify the SNPs associated with the disease response as well as genome 

based predictions of economically important traits.  The major problem to be tackled in such 

genome wide SNPs data or Genotype-by-Sequencing (GBS) data is that the number of SNPs 

(p) is much larger than the number of subjects or indiciduals present in the experiment. In 

statistical theory, this problem is popularly referred as p>>n. 

Genome Wide Association Study (GWAS) 

GWAS is an examination of all or maximum of genes in different individuals of a particular 

species to variations among individuals. Different variations are then associated with different 

traits, such as diseases. If the genetic variations are more frequent in a population with a 

disease, the variations are said to be "associated" with the disease. The associated genetic 

variations are then considered as pointers to the region of the genome under study where the 

disease-causing problem is likely to reside. Two methods are used to search for disease-

associated mutations: (i) hypothesis-driven methods, start with the hypothesis that a particular 

gene may be associated with a particular disease, and tries to find the association and (ii) non-

hypothesis-driven (hypothesis generation) studies use brute force methods to scan the entire 

genome to identify those genes demonstrate an association. GWAS is generally non-

hypothesis-driven.  

In recent years, complex trait research has witnessed yet another revolution with the 

introduction of high density SNP arrays for enabling genome wide genotyping and whole 

genome association studies. Besides, Copy Number Variations (CNVs) in the genome 

associated with disease can also be identified from the high density SNP arrays.  A systematic 

search and molecular characterization of CNVs are expected to provide useful insights into 
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their role in diseases. It is being increasingly recognized that careful phenotypic 

characterization together with statistical approaches are critical for the outcome of WGA 

studies. Thus, identification of disease causing genetic variants, understanding their 

interactions with other genes or pathways by statistical techniques helps in maintaining health 

care. 

Genome prediction  

The Mendelian rules of genetic inheritance are most obvious when the traits are controlled by 

a single gene. However, most of the economically and medically important traits in animals 

are complex in nature. As an example, most of the complex diseases are governed by a large 

number of loci with small and cumulative genetic effects. In such situations, predicting risk is 

a quite challenging task. Recently, Genome Prediction (GP) technique has been used to identify 

the genetic variants that can contribute to the risk prediction of the phenotypes.  

Genome Prediction Methods 

Let Yi be a binary indicator for the phenotype of subject i=1,…,n, and let Xij be the estimated 

allele dosage of SNP j=1,…,p for subject i. Further, it is considered Y=(Y1,…,Yn)
t, 

Xj=(X1j,…,Xnj)
t, and xi=(Xi1,…,Xip)

t. Penalized regression technique is carried out on data set of 

the p most significant SNPs. These most significant predictors are pre-selected on just the 

training data, and this selection is repeated each of the cross-validation steps.  

Since for most phenotypes that are studied in GWAS the signal is small, and often other risk 

factors are known, it is focused here mainly on modeling the probability that a subject is a case 

using logistic regression, rather than looking at classification. If a classification rule is needed 

probabilistic estimates can be thresholded taking mis-classification costs in consideration. The 

simplest approach to model the probabilities is to fit a linear logistic regression model on the p 

pre-selected SNPs:  

logit(P(Yi = 1|xi)) = i

p

j
ijj X  

1
0   

Traditionally, parameters in this model are estimated using maximum likelihood. When large 

numbers of predictors are used, the logistic regression model is known to overfit the data.  

Instead, Least Absolute Shrinkage Selection Operator (LASSO) and elasticnet, two examples 

of penalized regression methods are considered for the study.  

Let l(  ; Yi, xi, i =1,…,n) be the logistic log-likelihood. The LASSO and elasticnet estimates 

of   are the maximizers of  
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l( ; Yi, xi, i =1,…,n) - 


p

j
j

1
1   and  

l( ; Yi, xi, i =1,…,n) - 


p

j
j

1
1   - 



p

j
j

1

2
2  , 

respectively, where 1  and 2  are selected using cross-validation. Both these approaches 

effectively carry out model selection, as the l1 penalty 


p

j
j

1
1   will set many of the 

coefficients j  to 0. The potential advantage of the elastic net is that when many of the 

predictors are highly correlated, the l2 penalty 


p

j
j

1

2
2   encourages averaging of multiple-

correlated predictors, while the lasso would select just a single predictor. The elastic net penalty 

can be viewed as a combination of the lasso penalty and the l2 penalty form ridge regression, 

an early penalized regression method. Predicted probabilities of disease are evaluated using the 

logistic regression model on the test data. The fitted probabilities are summarized using the test 

data log-likelihood, receiver operating characteristic (ROC) curves and the Area Under Curve 

(AUC).   

 

Cross-validation and the selection of significant predictors 

Cross-validation is a technique for assessing how the results of a statistical analysis will 

generalize to an independent data set. It is mainly used in settings where the goal is 

prediction, and one wants to estimate how accurately a predictive model will perform in 

practice. One round of cross-validation involves partitioning a sample of data into 

complementary subsets, performing the analysis on one subset (called the training set), and 

validating the analysis on the other subset (called the validation set or testing set). To reduce 

variability, multiple rounds of cross-validation are performed using different partitions, and 

the validation results are averaged over the rounds. Hence, in K-fold cross-validation, the 

original sample is randomly partitioned into K subsamples. Of the K subsamples, a single 

subsample is retained as the validation data for testing the model, and the remaining K − 1 

subsamples are used as training data. The cross-validation process is then repeated K times 

(the folds), with each of the K subsamples used exactly once as the validation data. The K 

results from the folds then can be averaged (or otherwise combined) to produce a single 

estimation. 10-fold cross-validation is the most commonly used cross-validation technique. 

In stratified K-fold cross-validation, the folds are selected so that the mean response value 

is approximately equal in all the folds. In the case of a dichotomous classification, this means 

that each fold contains roughly the same proportions of the two types of class labels. Using 

the packages glmnet and cv.glmnet of R software, LASSO model can be implemented on 

the data.  

http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Accuracy
http://en.wikipedia.org/wiki/Partition_of_a_set
http://en.wikipedia.org/wiki/Statistical_sample
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Complement_%28set_theory%29
http://en.wikipedia.org/wiki/Variance
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Feature generation and feature selection in different online tools 

One of the major challenges in sequencing projects is to convert the textual (nucleotide or 

amino acid residue) information into numerical information so that numerical vectors can 

be used in machine learning approaches like ANN, SVM and Random Forest or in deep 

learning methods like convolutional neural networks (CNN). Such conversion leads to the 

generation of features (variables) and selection of variables is an importatnt step in the 

application of learning approaches. In case of GBS data, the genome wide SNPs are treated 

as features or variables. Selection of SNPs associated with trait under consideration is also 

a challenging task in high dimensional genome data analysis. The following are the few 

applications where fearture generations are outlined. With regards to the feature selection, 

the description on how to identify important features is given in the lecture notes on machine 

learning approaches.   

HRGPred: Prediction of herbicide resistant genes with k-mer nucleotide compositional 

features  

Here, two diferent types of k-mer features viz., contiguous k-mer (CkM) and pseudo k-mer 

(PkM) are considered. The CkM features have been used earlier for classifying the bacterial 

genomes, biological sequence clustering, predicting splicing junctions, DNA barcode-based 

species identification, etc. Also, the PkM features have been successfully used in many 

bioinformatics studies such as identifcation of DNA methylation sites, protein-protein 

interaction, N6-methyladenosine sites, RNA 5-methyl cytosine sites and prediction of 

protein sub mitochondrial locations. 

funbarRF: DNA barcode-based fungal species prediction using multiclass Random Forest 

supervised learning model 

The g-spaced base pair features are used to encode the barcode sequences into numeric 

feature vectors. Five kinds of g-spaced features namely 1-spaced (g=1), 2-spaced (g=2), 3-

spaced (g=3), 4-spaced (g=4) and 5-spaced (g=5) were computed. For any nucleotide 

sequence of length N, each g-spaced feature-set results in 16 descriptors. The frequency of 

the di-nucleotide s and t with g-gap (g-spaced feature value) is given by Dg(s, t)/(N − 1), 

where s, t = A, T, G, C; g = 1, 2, 3, 4, 5 and Dg(s, t) represents the counts of di-nucleotide s 

and t with g-gap. The g-spaced base pair features were computed by using BioSeqClass R-

package, where the function feature CKSAAP was executed to generate the features. 

nifPred: Proteome-Wide Identification and Categorization of Nitrogen-Fixation Proteins of 

Diaztrophs Based on Composition-Transition-Distribution Features Using Support Vector 

Machine 

javascript:void(0)
javascript:void(0)
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Six different sequence-based features to map the amino acid sequences into vectors of 

numeric observations were used. The features are compositions of amino acid residue 

compositions of di-peptides, pseudo amino acid compositions, composition-transition-

distribution, gap-pair compositions, and auto-correlation function.  Succinct descriptions 

about computation of the above mentioned features are given in the following sub-sections. 

(a) Amino acid composition (AAC) 

AAC is the simplest and most widely used feature for representing the protein sequences. It 

is nothing but the proportions of amino acid residues present in the sequence. Based on 

AAC, every protein sequence can be converted to a vector of 20 numeric observations. For 

a protein sequence with N residues, AAC for the ith amino acid can be computed as AAC(i) 

= fi/N, where i = 1, 2, …, 20 and fi indicates the number of times ith amino acid present in 

the sequence. 

(b) Di-peptide composition (DPC) 

Unlike AAC, DPC takes the ordering effects of amino acid residues within a short range 

into consideration (Ding et al., 2004). Anticipating improvement in accuracy by accounting 

the local-ordering of residues, DPC were considered as features. For any di-peptide Mj, DPC 

can be computed as DPC(j) = Mj/(N − 1), where j = 1, 2,…, 400 and N denotes the sequence 

length. Using DPC, each protein sequence can be transformed into a 400-dimensional 

numeric vector. 

(c) Gap-pair composition (GPC) 

For a given sequence with N amino acid residues, GPC for amino acid pair (i, j) with G-gap 

can be obtained as fG(i,j)=DG(i,j)(N−G−1), where i, j = 1, 2, …, 20 and DG(i, j) is the 

number of times the amino acid pair (i, j) appears in the sequence. Using GPC features, 

every amino acid sequence can be encapsulated with a numeric vector of 400 elements. 

Presently, we used 1 gap-pair (GPC-1) and 2 gap-pair (GPC-2) compositions as features. 

More clearly, for GPC-1 and GPC-2, the features are nothing but the proportions of amino 

acid pairs (i, j) separated by one residue (ixj), and two residues (ixxj) respectively, 

where x denotes any residue. 

(d) Pseudo amino acid composition (PseAAC) 

The PseAAC not only takes into account the sequence-ordering information within a local 

range but also the global sequence-ordering effects. This feature has been proven effective 

in many protein-related classifications (Wang et al., 2010). Using PseAAC, every protein 

sequence can be encoded to a (20+d)-dimension vector of numeric observations for d-tier 

correlation structure.  

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5986947/#B20
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5986947/#B71
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(e) Composition-transition-distribution (CTD) 

In CTD, C (composition) stands for the compositions of amino acids, T (transition) 

represents the percentage with which frequency of amino acids with specific properties is 

followed by amino acids with other properties and D (distribution) determines the length of 

the sequence within which the 1st as well as 25, 50, and 75 percents of amino acids of certain 

characteristics are located. With CTD feature, each sequence of N amino acid residues can 

be encoded to a numeric vector of N+{N*N−12}+(N*5) elements. 

(f) Auto-correlation function (ACF) 

Auto-correlation takes into account the dependencies among sequence features, which are 

computed by taking the distribution of amino acid properties into account. Here, the ACF-

based features were computed by considering all 531 amino acid properties obtained 

from AAindex database. Using ACF features, every sequence can be encoded to a (531*n)-

dimensional vector of numeric observations, for nth order autocorrelation. Here, we 

considered the 1st order autocorrelation only, because with higher order number of features 

will be very large. 

SPIDBAR: Identification of species by DNA barcode using k-mer feature vector and 

Random forest classifier 

Here, frequencies of oligo-nucleotide strings of different scale k were used to map the 

barcode sequences onto numeric vectors.  

For a given barcode sequence of length L, the number of possible oligo-nucleotide strings 

of R consecutive bases α1, α2, …, αR is (L – R + 1), where αi є {A, T, G, C}. Let n(α1, α2, 

…, αR) be the number of times the string α1, α2, …, αR appears in the barcode sequence, 

by sliding through the sequence, shifting one nucleotide position at a time. Then, the 

probability of string α1, α2, …, αR appearing in the sequence can be computed as n(α1, α2, 

…, αR)/(L – R + 1). For instance, in the DNA sequence ‘TGAGGTTTGTTTACGGTGAT’, 

p(A) = 3/20, p(TT) = 4/(20 – 2 + 1) and p(TTT) = 2/(20 – 3 + 1). There are 4k and 

∑k=a,b,c,...4k features possible for single scale k (i.e., k = 1 or 2 or 3, etc.) and multiple 

scale k (i.e., k = (1, 2), (1, 3), (1, 3, 4) etc.) respectively.  

iAMPPred: Predicting antimicrobial peptides with improved accuracy  

Since the peptide sequences are the strings of amino acids, they need to be mapped onto 

numeric feature vectors before being used as an input in supervised learning classifiers. 

Three different categories of features i.e., compositional, PHYC and STRL were considered 

here. In particular, 3 compositional (amino acid composition-AAC, pseudo amino acid 

composition-PAAC and normalized amino acid composition-NAAC), 3 PHYC 

(hydrophobicity, net-charge and iso-electric point) and 3 STRL (α-helix propensity, β-sheet 
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propensity and turn propensity) features were considered (Table 2) for prediction of AMPs. 

The compositional and PHYC features were computed by using the “Peptide” package of 

R-software, whereas the STRL features were computed by using the TANGO software 

available at http://tango.crg.es/. Furthermore, to know the importance of each feature in 

predicting the antibacterial, antiviral and antifungal peptides, information gain was 

computed for all the 66 features [AAC (20)+ PAAC (20)+ NAAC (20)+ PHYC (3)+ STRL 

(3)]. To compute the information gain, the InfoGainAttributeEval function available in 

RWeka package was used. 

DCDNC: Software for discrimination of coding sequences (CDS) from non-coding 

sequences (Introns) 

Each CDS and intron sequence was transformed into a numeric vector (of length five) based 

on five different indices i.e., Nucleotide frequencies by triplet sites (Nuft), Di-nucleotide 

frequencies by triplet sites (Dnft), Differential methylation intensity (Dmi), Triplet 

avoidance index (Tai) and Polypurine and polypyrimidine index (Popi). For computing the 

values of these indices we have written code in R-programming language.  

ir-HSP: Improved Recognition of Heat Shock Proteins, Families and Sub-types  

Four kinds of di-peptide compositions, i.e., 0-spaced, 1-spaced, 2-spaced, and 3-spaced were 

used, which are nothing but the frequencies of all pairs of amino acids conditioned with 0, 

1, 2, and 3 skips, respectively. Besides, all possible combinations of 0-, 1-, 2-, and 3-gap 

(spaced) amino acid pair compositions (GPC) were also used as features. Since, 

composition-transition-distribution (CTD), autocorrelation function (ACF), and pseudo-

AAC (PAAC) features also take into account the local ordering of amino acids as similar to 

GPC, they were considered as features. For computing these features, BioSeqClass package 

of R-software was used. 
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Overview on R and R-Studio 

 (Basic Commands and Data Handling) 
 

R is a free software environment for statistical computing and graphics. It compiles and runs 

on a wide variety of UNIX platforms, Windows and MacOS. R is a vehicle for newly 

developing methods of interactive data analysis. It has developed rapidly, and has been 

extended by a large collection of packages. 

R environment 

The R environment provides an integrated suite of software facilities for data manipulation, 

calculation and graphical display. It has 

 a data handling and storage facility, 

 a suite of operators for calculations on arrays and matrices, 

 a large, integrated collection of intermediate tools for data analysis, 

 graphical facilities for data analysis and display, and 

 a well-developed, simple and effective programming language (called ‘S’) which 

includes conditionals, loops, user defined functions and input and output facilities. 

Origin 

R can be regarded as an implementation of the S language which was developed at Bell 

Laboratories by Rick Becker, John Chambers and Allan Wilks, and also forms the basis of 

the S-Plus systems. Robert Gentleman and Ross Ihaka of the Statistics Department of the 

University of Auckland started the project on R in 1995 and hence the name software has 

been named as ‘R’.  

R was introduced as an environment within which many classical and modern statistical 

techniques can be implemented. A few of these are built into the base R environment, but 

many are supplied as packages. There are a number of packages supplied with R (called 

“standard” and “recommended” packages) and many more are available through the CRAN 

family of Internet sites (via http://cran.r-project.org) and elsewhere. 

Availability 

Since R is an open source project, it can be obtained freely from the website www.r-

project.org. One can download R from any CRAN mirror out of several CRAN 

(Comprehensive R Archive Network) mirrors. Latest available version of R is R version 3.6.1 

and it has been released on 05.07.2019.  
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Download and Installation of R 

Precompiled binary distributions of the base system and contributed packages, Windows and 

Mac users most likely want one of these versions of R: Linux , MacOS X, Windows.  

Download and Installation of R for Windows is as follows: 

 Visit http://cran.us.r-project.org/ 

 Browse Windows 

 Click on “base” link - Binaries for base distribution (managed by Duncan Murdoch) 

 Click “README.R-2.8.0” for Installation and other instructions 

 Click “R-2.8.0-win32.exe” for downloading R-2.8.0 software 

 Once download is complete, run “R-2.8.0-win32.exe”. 

 Follow the instructions to install R software. 

 Click “R” shortcut icon. A “RGui” based “R Console” will appear 

 

An exhaustive help in R can be seen by typing “help.start()”.  

Usage 

R can work under Windows, UNIX and Mac OS. In this note, we consider usage of R in 

Windows set up only.  

Important R-Packages 

Basics  

attribute: Data Attributes  

 chron: Dates and Times  

 classes: Data Types (not OO)  

http://cran.us.r-project.org/
javascript:searchInIndex('attribute',%20false,%20true,%20false);
javascript:searchInIndex('chron',%20false,%20true,%20false);
javascript:searchInIndex('classes',%20false,%20true,%20false);
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o NA: Missing Values  

o category: Categorical Data  

o character: Character Data ("String") Operations  

o complex: Complex Numbers  

 data: Environments, Scoping, Packages  

 datasets: Datasets available by data()  

 list: Lists  

 manip: Data Manipulation  

 package: Package Summaries  

 sysdata: Basic System Variables  

Graphics  

 aplot: Add to Existing Plot / internal plot  

 color: Color, Palettes etc  

 device: Graphical Devices  

 dplot: Computations Related to Plotting  

 dynamic: Dynamic Graphics  

 hplot: High-Level Plots  

 iplot: Interacting with Plots  

MASS (the book) uses  

 classif: Classification  

 neural: Neural Networks  

 spatial: Spatial Statistics  

Mathematics  

 arith: Basic Arithmetic and Sorting  

 array: Matrices and Arrays  

o algebra: Linear Algebra  

 graphs: Graphs (not graphics), i.e nodes&edges, e.g. dendrograms  

 logic: Logical Operators  

 math: Mathematical Calculus etc  

 optimize: Optimization  

 symbolmath: "Symbolic Math", as polynomials, fractions  

Programming, Input/Ouput, and Miscellaneous  

 IO: Input/output  

o connection: Input/Output Connections  

o database: Interfaces to databases  

javascript:searchInIndex('NA',%20false,%20true,%20false);
javascript:searchInIndex('category',%20false,%20true,%20false);
javascript:searchInIndex('character',%20false,%20true,%20false);
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javascript:searchInIndex('datasets',%20false,%20true,%20false);
javascript:searchInIndex('list',%20false,%20true,%20false);
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o file: Input/Output Files  

 debugging: Debugging Tools  

 documentation: Documentation  

 environment: Session Environment  

 error: Error Handling  

 internal: Internal Objects (not part of API)  

 iteration: Looping and Iteration  

 methods: Methods and Generic Functions  

 misc: Miscellaneous  

 print: Printing  

 programming: Programming  

o interface: Interfaces to Other Languages  

 utilities: Utilities  

Statistics  

 cluster: Clustering  

 datagen: Functions for generating data sets  

 design: Designed Experiments  

 distribution: Probability Distributions and Random Numbers  

 htest: Statistical Inference  

 models: Statistical Models  

o regression: Regression  

 nonlinear: Non-linear Regression  

 multivariate: Multivariate Techniques  

 nonparametric: Nonparametric Statistics  

 robust: Robust/Resistant Techniques  

 smooth: Curve (and Surface) Smoothing  

o loess: Loess Objects  

 survey: Complex survey samples  

 survival: Survival Analysis  

 tree: Regression and Classification Trees  

 ts: Time Series  

 univar: simple univariate statistics  

Difference with other packages 

There is an important difference between R and the other statistical packages. In R, a 

statistical analysis is normally done as a series of steps, with intermediate results being stored 

in objects. Thus whereas SAS and SPSS will give large amount of output from a given 
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analysis, R will give minimal output and store the results in an object for subsequent 

interrogation by further R functions. 

Invoking R  

If properly installed, usually R has a shortcut icon on the desktop screen and/or you can find 

it under Start|All Programs|R menu. 

 

 
 

To quit R, type q() at the R prompt (>) and press Enter key. A dialog box will ask whether to 

save the objects you have created during the session so that they will become available next 

time when R will be invoked.  

 
 

R commands 

i. R commands are case sensitive, so X and x are different symbols and would refer to 

different variables.  

ii. Elementary commands consist of either expressions or assignments.  

iii. If an expression is given as a command, it is evaluated, printed and the value is lost. 

iv. An assignment also evaluates an expression and passes the value to a variable but the 

result is not automatically printed. 

v. Commands are separated either by a semi-colon (‘;’), or by a newline.  

vi. Elementary commands can be grouped together into one compound expression by 

braces ‘{‘ and ‘}’. 
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vii. Comments can be put almost anywhere, starting with a hashmark (‘#’). Anything 

written after # marks to the end of the line is considered as a comment. 

viii. Window can be cleared of lines by pressing Ctrl + L keys. 

Executing commands from or diverting output to a file 

If commands are stored in an external file, say ‘D:/commands.txt’ they may be executed at 

any time in an R session with the command 

> source("d:/commands.txt") 

For Windows Source is also available on the File menu.  

The function sink(),  

> sink("d:/record.txt") 

will divert all subsequent output from the console to an external file, ‘record.txt’ in D drive. 

The command 

> sink() 

restores it to the console once again. 

Simple manipulations of numbers and vectors 

R operates on named data structures. The simplest such structure is the numeric vector, which 

is a single entity consisting of an ordered collection of numbers. To set up a vector named x, 

say, consisting of five numbers, namely 10.4, 5.6, 3.1, 6.4 and 21.7, use the R command 

> x <- c(10.4, 5.6, 3.1, 6.4, 21.7) 

The function c() assigns the five numbers to the vector x. The assignment operator (<-) 

‘points’ to the object receiving the value of the expression. Once can use the ‘=’ operator as 

an alternative. 

A single number is taken as a vector of length one.  

Assignments can also be made in the other direction, using the obvious change in the 

assignment operator. So the same assignment could be made using 

> c(10.4, 5.6, 3.1, 6.4, 21.7) -> x 

If an expression is used as a complete command, the value is printed. So now if we were to 

use the command 
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> 1/x 

the reciprocals of the five values would be printed at the terminal. 

The elementary arithmetic operators  

+  addition 

– subtraction 

*  multiplication 

/  division  

 ^  exponentiation 

Arithmetic functions  

log, exp, sin, cos, tan, sqrt,  

Other basic functions 

max(x) – maximum element of vector x,  

min(x)- minimum element of vector x,  

range (x) – range of the values of vector x ,   

length(x) - the number of elements in x,  

sum(x) - the total of the elements in x,  

prod(x) – product of the elements in x 

mean(x) – average of the elements of x 

var(x) – sample variance of the elements of (x) 

sort(x) – returns a vector with elements sorted in increasing order. 

Logical operators 

< - less than 

<= less than or equal to 

> greater than 

>= greater than or equal to 

 == equal to  

!= not equal to. 

Other objects in R 

Matrices or arrays - multi-dimensional generalizations of vectors. 

Lists - a general form of vector in which the various elements need not be of the same type, 

and are often themselves vectors or lists. 
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Functions - objects in R which can be stored in the project’s workspace. This provides a 

simple and convenient way to extend R. 

Matrix facilities 

A matrix is just an array with two subscripts. R provides many operators and functions those 

are available only for matrices. Some of the important R functions for matrices are 

t(A) – transpose of the matrix A   

nrow(A) – number of rows in the matrix A 

ncol(A) – number of columns in the matrix A 

A%*% B– Cross product of two matrices A and B 

A*B – element by element product of two matrices A and B 

diag (A) – gives a vector of diagonal elements of the square matrix A 

diag(a) – gives a matrix with diagonal elements as the elements of vector a 

eigen(A) – gives eigen values and eigen vectors of a symmetric matrix A 

rbind (A,B) – concatenates two matrix A and B by appending B matrix below A matrix (They 

should have same number of columns) 

cbind(A, B) - concatenates two matrix A and B by appending B matrix in the right of A 

matrix (They should have same number of rows) 

Data frame  

Data frame is an array consisting of columns of various mode (numeric, character, etc). Small 

to moderate size data frame can be constructed by data.frame() function. For example, 

following is an illustration how to construct a data frame from the car data*:  

  Make Model Cylinder Weight Mileage Type 

Honda Civic V4 2170 33 Sporty 

Chevrolet  Beretta V4 2655 26 Compact 

Ford Escort V4 2345 33 Small 

Eagle Summit V4 2560 33 Small 

Volkswagen Jetta V4 2330 26 Small 

Buick Le Sabre V6 3325 23 Large 

Mitsubishi Galant V4 2745 25 Compact 

Dodge Grand Caravan V6 3735 18 Van 

Chrysler New Yorker V6 3450 22 Medium 

Acura Legend V6 3265 20 Medium 

> Make<-c("Honda","Chevrolet","Ford","Eagle","Volkswagen","Buick","Mitsbusihi",  

+ "Dodge","Chrysler","Acura")  

> Model=c("Civic","Beretta","Escort","Summit","Jetta","Le Sabre","Galant",  

+ "Grand Caravan","New Yorker","Legend")  
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Note that the plus sign (+) in the above commands are automatically inserted when the 

carriage return is pressed without completing the list. Save some typing by using rep() 

command. For example, rep("V4",5) instructs R to repeat V4 five times.  

> Cylinder<-c(rep("V4",5),"V6","V4",rep("V6",3))  

> Cylinder  

 [1] "V4" "V4" "V4" "V4" "V4" "V6" "V4" "V6" "V6" "V6"  

> Weight<-c(2170,2655,2345,2560,2330,3325,2745,3735,3450,3265)  

> Mileage<-c(33,26,33,33,26,23,25,18,22,20)  

> Type<-c("Sporty","Compact",rep("Small",3),"Large","Compact","Van",rep("Medium",2))  

Now data.frame() function combines the six vectors into a single data frame.  

 

> Car<-data.frame(Make,Model,Cylinder,Weight,Mileage,Type)  

> Car  

         Make         Model Cylinder Weight Mileage    Type  

1       Honda         Civic       V4   2170      33  Sporty  

2   Chevrolet       Beretta       V4   2655      26 Compact  

3        Ford        Escort       V4   2345      33   Small  

4       Eagle        Summit       V4   2560      33   Small  

5  Volkswagen         Jetta       V4   2330      26   Small  

6       Buick      Le Sabre       V6   3325      23   Large  

7  Mitsbusihi        Galant       V4   2745      25 Compact  

8       Dodge Grand Caravan       V6   3735      18     Van  

9    Chrysler    New Yorker       V6   3450      22  Medium  

10      Acura        Legend       V6   3265      20  Medium  

> names(Car)  
[1] "Make"     "Model"    "Cylinder" "Weight"   "Mileage"  "Type"  

Just as in matrix objects, partial information can be easily extracted from the data frame:  

> Car[1,]  

   Make Model Cylinder Weight Mileage   Type 

1 Honda Civic       V4   2170      33 Sporty 

In addition, individual columns can be referenced by their labels:  

> Car$Mileage  

 [1] 33 26 33 33 26 23 25 18 22 20  

> Car[,5]        #equivalent expression 

> mean(Car$Mileage)    #average mileage of the 10 vehicles  

[1] 25.9  

> min(Car$Weight)  

[1] 2170  
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table() command gives a frequency table:  

> table(Car$Type)  

Compact   Large  Medium   Small  Sporty     Van  

      2       1       2       3       1       1  

If the proportion is desired, type the following command instead:  

> table(Car$Type)/10  

Compact   Large  Medium   Small  Sporty     Van  

    0.2     0.1     0.2     0.3     0.1     0.1  

Note that the values were divided by 10 because there are that many vehicles in total. If you 

don't want to count them each time, the following does the trick:  

> table(Car$Type)/length(Car$Type)  

Cross tabulation is very easy, too:  

> table(Car$Make, Car$Type)  

             Compact Large Medium Small Sporty Van  

  Acura      0       0     1      0     0      0  

  Buick      0       1     0      0     0      0  

  Chevrolet  1       0     0      0     0      0  

  Chrysler   0       0     1      0     0      0  

  Dodge      0       0     0      0     0      1  

  Eagle      0       0     0      1     0      0  

  Ford       0       0     0      1     0      0  

  Honda      0       0     0      0     1      0  

  Mitsbusihi 1       0     0      0     0      0  

  Volkswagen 0       0     0      1     0      0  

What if you want to arrange the data set by vehicle weight? order() gets the job done.  

> i<-order(Car$Weight);i  

 [1]  1  5  3  4  2  7 10  6  9  8  
> Car[i,]  

         Make         Model Cylinder Weight Mileage    Type  

1       Honda         Civic       V4   2170      33  Sporty  

5  Volkswagen         Jetta       V4   2330      26   Small  

3        Ford        Escort       V4   2345      33   Small  

4       Eagle        Summit       V4   2560      33   Small  

2   Chevrolet       Beretta       V4   2655      26 Compact  

7  Mitsbusihi        Galant       V4   2745      25 Compact  

10      Acura        Legend       V6   3265      20  Medium  

6       Buick      Le Sabre       V6   3325      23   Large  
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9    Chrysler    New Yorker       V6   3450      22  Medium  

8       Dodge Grand Caravan       V6   3735      18     Van  

Creating/editing data objects  

> y<-c(1,2,3,4,5);y  

[1] 1 2 3 4 5  

If you want to modify the data object, use edit() function and assign it to an object. For 

example, the following command opens R Editor for editing.  

> y<-edit(y)  

If you prefer entering the data.frame in a spreadsheet style data editor, the following 

command invokes the built-in editor with an empty spreadsheet.  

> data1<-edit(data.frame())  

After entering a few data points, it looks like this:  

 
 

You can also change the variable name by clicking once on the cell containing it. Doing so 

opens a dialog box: 
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When finished, click  in the upper right corner of the dialog box to return to the Data 

Editor window. Close the Data Editor to return to the R command window (R Console). 

Check the result by typing:  

> data1  

 

Reading data from files 

When data files are large, it is better to read data from external files rather than entering data 

through the keyboard.  To read data from an external file directly, the external file should be 

arranged properly. 

The first line of the file should have a name for each variable. Each additional line of the file 

has the values for each variable.  

Input file form with names and row labels: 

Price  Floor  Area  Rooms Age  is New 

52.00  111.0  830  5  6.2  no 

54.75  128.0  710  5  7.5  no 

57.50  101.0  1000  5  4.2  yes 

57.50  131.0  690  6  8.8  no 

59.75  93.0  900  5  1.9  yes 

... 

By default numeric items (except row labels) are read as numeric variables and non-numeric 

variables, such as isNew in the example, as factors. This can be changed if necessary. 

The function read.table() can then be used to read the data frame directly 
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> HousePrice <- read.table("d:/houses.data", header = TRUE) 

Reading comma delimited data  

The following commands can be used for reading comma delimited data into R. 

read.csv(filename)  This command reads a .CSV file into R. You need to specify 

the exact filename with path.  

read.csv(file.choose())  This command reads a .CSV file but the file.choose() part 

opens up an explorer type window that allows you to select a 

file from your computer. By default, R will take the first row as 

the variable names.  

read.csv(file.choose(), header=T) 

This reads a .CSV file, allowing you to select the file, the 

header is set explicitly. If you change to header=F then the first 

row will be treated like the rest of the data and not as a label.  

Storing variable names 

Through read.csv() or read.table() functions, data along with variable labels is read into R 

memory. However, to read the variables’ names directly into R, one should use 

attach(dataset) function. For example,  

>attach(HousePrice)  

causes R to directly read all the variables’ names eg. Price, Floor, Area etc. it is a good 

practice to use the attach(datafile) function immediately after reading the datafile into R. 

Packages 

All R functions and datasets are stored in packages. The contents of a package are available 

only when the package is loaded. This is done to run the codes efficiently without much 

memory usage. To see which packages are installed at your machine, use the command 

> library() 

To load a particular package, use a command like 

> library(forecast) 

Users connected to the Internet can use the install.packages() and update.packages() 

functions to install and update packages. Use search() to display the list of packages that are 

loaded.  
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Standard packages 

The standard (or base) packages are considered part of the R source code. They contain the 

basic functions those allow R to work with the datasets and standard statistical and graphical 

functions. They should be automatically available in any R installation.  

Contributed packages and CRAN 

There are a number of contributed packages for R, written by many authors. Various 

packages deal with various analyses. Most of the packages are available for download from 

CRAN (https://cran.r-project.org/web/packages/), and other repositories such as 

Bioconductor (http://www.bioconductor.org/). The collection of available packages changes 

frequently. As on June 07, 2019, the CRAN package repository contains 14346 available 

packages. 

Getting Help 

Complete help files in HTML and PDF forms are available in R. To get help on a particular 

command/function etc., type help (command name). For example, to get help on function 

‘mean’, type help(mean) as shown below 

> help(mean) 

This will open the help file with the page containing the description of the function mean.  

Another way to get help is to use “?” followed by function name. For example, 

>?mean 

will open the same window again. 

In this lecture note, all R commands and corresponding outputs are given in Courier New font 

to differentiate from the normal texts. Since R is case-sensitive, i.e. typing Help(mean), 

would generate an error message,  

> Help(mean) 

Error in Help(mean) : could not find function "Help" 

Further Readings 

Various documents are available in https://cran.r-project.org/manuals.html from beginners’ 

level to most advanced level. The following manuals are available in pdf form: 

1. An Introduction to R 

2. R Data Import/Export 



High Dimensional Genome data Analysis by R and Open Source Tools CAAST-2019 

 

Page | 24 

3. R Installation and Administration 

4. Writing R Extensions 

5. The R language definition 

6. R Internals 

7. The R Reference Index 

RStudio 

RStudio is an integrated development environment (IDE) that allows to interact with R more 

readily. RStudio is similar to the standard RGui, but is considerably more user friendly. It has 

more drop-down menus, windows with multiple tabs, and many customization options.  

Installation of RStudio 

RStudio requires R 3.0.1+ that means R software should be pre-installed before using 

RStudio.  

RStudio 1.2 requires a 64-bit operating system, and works exclusively with the 64 bit version 

of R. If you are on a 32 bit system or need the 32 bit version of R, you can use an older 

version of RStudio (https://support.rstudio.com/hc/en-us/articles/206569407-Older-Versions-

of-RStudio). 

RStudio free desktop version can be downloaded from the following link: 

https://www.rstudio.com/products/rstudio/download/#download 

The first time RStudio is opened, three windows are seen. A forth window is hidden by 

default, but can be opened by clicking the File drop-down menu, then New File, and then R 

Script. 
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Importing Data in R Studio 

1. Click on the import dataset button in the top-right section under the environment tab. 

Select the file you want to import and then click open. The Import Dataset dialog will 

appear as shown below 

 

 
 

2. After setting up the preferences of separator, name and other parameters, click on the 

Import button. The dataset will be imported in R Studio and assigned to the variable 

name as set before. 

Installing Packages in RStudio 

Within the Packages tab, a list of all the packages currently installed on the working 

computer and 2 buttons labeled either “Install” or “Update” are seen. To install a new 

package simply select the Install button. It is possible to install one or more than one 

packages at a time by simply separating them with a comma. 

 



High Dimensional Genome data Analysis by R and Open Source Tools CAAST-2019 

 

Page | 26 

 
 

 

 
 

Loading Packages in RStudio 

Once a package is installed, it must be loaded into the R session to be used. 
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Writing Scripts in RStudio 

RStudio’s Source Tabs serve as a built-in text editor. Prior to executing R functions at the 

Console, commands are typically written down (or scripted). To write a script, simply open a 

new R script file by clicking File>New File>R Script. Within the text editor type out a 

sequence of functions. 

 Place each function (e.g. read.csv()) on a separate line. 

 If a function has a long list of arguments, place each argument on a separate line. 

 A command can be executed from the text editor by placing the cursor on a line and 

typing Crtl + Enter, or by clicking the Run button. 

 An entire R script file can be executed by clicking the Source button. 

 

 
 

Saving R files in RStudio 

In R, several types of files can be saved to keep track of the work performed. The file types 

include: script, workspace, history and graphics. 
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R script (.R) 

An R script is a text file of R commands that have been typed. To save R scripts in RStudio, 

click the save button from R script tab. Save scripts with the .R extension. 

 
 

To open an R script, click the file icon. 

 

Workspace (.Rdata) 

The R workspace consists of all the data objects created or loaded during the R session. It is 

possible to save or load the workspace at any time during the R session from the menu by 

clicking Session>Save Workspace As.., or the save button on the Environment Tab. 

 

 
 

R history (.Rhistory) 

Rhistory file is a text file that lists all of the commands that have been executed. It does not 

keep a record of the results. To load or save R history from the History Tab click the Open 

File or Save button. 
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R Graphics 

Graphic outputs can be saved in various formats like pdf, png, jpeg, bmp etc.  

To save a graphic: (1) Click the Plots Tab window, (2) click the Export button, (3) Choose 

desired format, (4) Modify the export settings as desired and (4) click Save. 
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Descriptive Statistics and Linear Models Using R 
 

Descriptive statistics are used to describe the basic features of the data in a study. They 

provide summaries about the sample and the measures. Together with simple graphics 

analysis, they form the basis of quantitative analysis of data. Descriptive statistics can be 

divided into 2 categories: 

Measures of Central Tendency 

Central tendency or measure of central tendency is a central or typical value for a probability 

distribution. The most common measures of central tendency are the arithmetic mean, the 

median and the mode. 

Mean: The mean is equal to the sum of all the values in the data set divided by the number of 

values in the data set. So, if we have n values in a data set and they have values x1, x2, ..., xn, 

the sample mean, usually denoted by , is: 

 

Or   

Median: The median is the middle value for a set of data that has been arranged in order of 

magnitude. To find the median, order the data from smallest to largest, and then find the data 

point that has an equal amount of values above it and below it. The method for locating the 

median varies depending on whether the dataset has an even or odd number of values. If the 

dataset is having odd number of observations, there will be only one middlemost observation 

and the corresponding value is the median. When there is an even number of values, it is 

required to count in to the two innermost values and then take the average. 

Mode: The mode is the value that occurs most frequently in the data set. If the data have 

multiple values that are tied for occurring most frequently, there exists a multimodal 

distribution. If no value repeats, the data do not have a mode. Typically, the mode can be 

used with categorical, ordinal, and discrete data. In fact, the mode is the only measure of 

central tendency that can be used with categorical data such as the most preferred way of 

transport out of car, train and bus. 

Measures of Dispersion 

The measure of dispersion shows the scatterings of the data. It shows the homogeneity or the 
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heterogeneity of the distribution of the observations. The measure of dispersion is categorized 

as: 

(a) Absolute measure of dispersion:  

(i) The measures which express the scattering of observation in terms of distances i.e., 

range, quartile deviation. 

(ii) The measure which expresses the variations in terms of the average of deviations of 

observations like mean deviation and standard deviation. 

(b) Relative measure of dispersion: Relative measure of dispersion is used for comparing 

distributions of two or more data set and for unit free comparison. They are coefficient of 

range, coefficient of mean deviation, coefficient of quartile deviation, coefficient of variation, 

and coefficient of standard deviation. 

Range: It is the difference between two extreme observations of the data set. If Xmax and Xmin 

are the two extreme observations then 

Range = Xmax – Xmin 

Quartile Deviation: The quartiles divide a data set into quarters. The first quartile, (Q1) is the 

middle number between the smallest number and the median of the data. The second quartile, 

(Q2) is the median of the data set. The third quartile, (Q3) is the middle number between the 

median and the largest number. 

Quartile deviation or semi-inter-quartile deviation is 

Q = ½ × (Q3 – Q1) 

Mean Deviation: Mean deviation is the arithmetic mean of the absolute deviations of the 

observations from a measure of central tendency. If x1, x2, … , xn are the set of observation, 

then the mean deviation of x about the average A (mean, median, or mode) is 

Mean deviation from average A = 1⁄n [∑i|xi – A|] 

For a grouped frequency, it is calculated as: 

Mean deviation from average A = 1⁄N [∑i fi |xi – A|], N = ∑fi 

Here, xi and fi are respectively the mid value and the frequency of the ith class interval. 

Standard Deviation: A standard deviation is the positive square root of the arithmetic mean 

of the squares of the deviations of the given values from their arithmetic mean. It is also 

referred to as root mean square deviation. The standard deviation is given as 
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σ = [(Σi (yi – ȳ)2⁄ n] ½  =  [(Σi yi
2 ⁄ n) – ȳ2] ½ 

For a grouped frequency distribution, it is 

σ = [(Σi fi (yi – ȳ)2⁄ n] ½ = [(Σi fi yi
2 ⁄ n) – ȳ2] ½ 

The square of the standard deviation is the variance. It is also a measure of dispersion.  

σ2 = [(Σi (yi – ȳ)2 / n]  = [(Σi yi
2 ⁄ n) – ȳ2] 

For a grouped frequency distribution, it is 

σ2 = [(Σi fi (yi – ȳ)2⁄ n] = [(Σi fi yi
2 ⁄ n) – ȳ2]. 

If instead of a mean, any other arbitrary number, say A, is chosen, the standard deviation 

becomes the root mean deviation. 

Variance of the Combined Series: If σ1, σ2 are two standard deviations of two series of sizes 

n1 and n2 with means ȳ1 and ȳ2. The variance of the two series of sizes n1 + n2 is: 

σ2 = (1/ n1 + n2) ÷ [n1 (σ1
2 + d1

2) + n2 (σ2
2 + d2

2)] 

where, d1 = ȳ1 − ȳ , d2 = ȳ2 − ȳ , and ȳ  = (n1ȳ1 + n2ȳ2) ÷ ( n1 + n2). 

Coefficient of Dispersion: Coefficient of dispersion is used to compare the variability of the 

two series which differ widely in their averages. Also, it is used when the unit of 

measurement is different. It is needed to calculate the coefficients of dispersion along with 

the measure of dispersion. The coefficients of dispersion (C.D.) based on different measures 

of dispersion are: 

Based on Range = (Xmax – Xmin) ⁄ (Xmax + Xmin). 

C.D. based on quartile deviation = (Q3 – Q1) ⁄ (Q3 + Q1). 

Based on mean deviation = Mean deviation/average from which it is calculated. 

For Standard deviation = S.D. ⁄ Mean 

Coefficient of Variation: This is 100 times the coefficient of dispersion based on standard 

deviation. 

C.V. = 100 × (S.D. / Mean) = (σ/ȳ ) × 100. 

Skewness and Kurtosis 

The average and measure of dispersion can describe the distribution but they are not 

sufficient to describe the nature of the distribution. For this purpose, other concepts known as 
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Skewness and Kurtosis, are used. 

Skewness 

Skewness is a measure of the asymmetry of the probability distribution of a real-valued 

random variable about its mean. The skewness value can be positive or negative, or 

undefined. In a perfect normal distribution, the tails on either side of the curve are exact 

mirror images of each other. 

When a distribution is skewed to the left, the tail on the curve’s left-hand side is longer than 

the tail on the right-hand side, and the mean is less than the mode. This situation is also called 

negative skewness. 

When a distribution is skewed to the right, the tail on the curve’s right-hand side is longer 

than the tail on the left-hand side, and the mean is greater than the mode. This situation is also 

called positive skewness. 

 

 

 

To calculate skewness coefficient of the sample, there are two methods: 

Pearson First Coefficient of Skewness (Mode skewness):  

(Mean – Mode) / Standard Deviation 

Pearson Second Coefficient of Skewness (Median skewness): 

3(Mean – Median) / Standard Deviation 
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The other measure uses the  (‘beta’) coefficient which is given by, 1 =




3

2

2

3
 where, 2 and 3 

are the second and third central moments. The second central moment 2 is nothing but the 

variance. The sample estimate of this coefficient is b1 = 
m

m

3

2

2

3
 where m2 and m3 are the second 

and third sample central moments. 

Interpretations 

a. The direction of skewness is given by the sign. A zero means no skewness at all or the 

distribution is symmetric. 

b. A negative value means the distribution is negatively skewed. A positive value means the 

distribution is positively skewed. 

c. The coefficient compares the sample distribution with a normal distribution. The larger the 

value, the larger the distribution differs from a normal distribution. 

Kurtosis 

The measure of kurtosis is used to find out existence of outliers. Kurtosis is a measure of 

whether the data are heavy-tailed (profusion of outliers) or light-tailed (lack of outliers) 

relative to a normal distribution. 

 

There are three types of Kurtosis: 

a. Mesokurtic: This is the distribution which has similar kurtosis as normal distribution 

kurtosis, which is zero. 

b. Leptokurtic: This is the distribution which has kurtosis greater than a Mesokurtic 

distribution. Tails of such distributions are thick and heavy. If the curve of a distribution is 

more peaked than Mesokurtic curve, it is referred to as a Leptokurtic curve. 
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c. Platykurtic: This is the distribution which has kurtosis lesser than a Mesokurtic 

distribution. Tails of such distributions are thinner. If a curve of a distribution is less peaked 

than a Mesokurtic curve, it is referred to as a Platykurtic curve. 

Kurtosis is measured by Pearson’s coefficient, 2 (‘beta - two’). It is given by 2 = 




4

2

2
.  

The sample estimate of this coefficient is b2 = 
m

m

4

2

2
 where, m4 is the fourth central moment.   

The distribution is called normal if b2 = 3. When b2 is more than 3 the distribution is said to 

be leptokurtic. If b2 is less than 3 the distribution is said to be platykurtic. 

The main difference between skewness and kurtosis is that the skewness refers to the degree 

of symmetry, whereas the kurtosis refers to the degree of presence of outliers in the 

distribution. 

Histogram 

Histogram shows the frequency distribution of a quantitative variable as vertical bars with 

area of the bar denotes the frequency of items found in each class interval. Histograms are 

useful to assess the distribution of the variable. 

Box Plot 

A box plot or boxplot is a method for graphically depicting groups of numerical data through 

their quartiles. This is a standardized way of displaying the distribution of data based on a 

five number summary (“minimum”, first quartile (Q1), median, third quartile (Q3), and 

“maximum”). 

Descriptive Statistics using R 

In this section, a set of functions available in R are presented to describe and explore data. 

# mean() is used to calculate mean value in a data series. 

# mean(x, trim = 0, na.rm = FALSE, ...) 

# Create a vector.  

> x = c(12,7,3,4.2,18,2,54,-21,8,-5) 

# Find Mean. 

> result.mean = mean(x) 

> print(result.mean) 

[1] 8.22 
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# When trim = 0.3, 3 values from each end will be dropped from the  

# calculations to find mean. 

 

> result.mean =  mean(x,trim = 0.3) # Find Mean. 

> print(result.mean) 

[1] 5.55 

 

# If there are missing values, then the mean function returns NA. 

# To drop the missing values from the calculation use na.rm = TRUE #which means remove 

the NA values. 

 

# Create a vector.  

> x = c(12,7,3,4.2,18,2,54,-21,8,-5,NA) 

 

# Mean can’t be calculated as x contains NA. 

> result.mean =  mean(x) 

> print(result.mean) 

[1] NA 

 

# Find mean after dropping NA values. 

> result.mean =  mean(x,na.rm = TRUE) 

> print(result.mean) 

[1] 8.22 

# The median() function is used in R to calculate median value. 

# function: median(x, na.rm = FALSE) 

# Create the vector. 

> x = c(12,7,3,4.2,18,2,54,-21,8,-5) 

# Find the median. 
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> median.result = median(x) 

> print(median.result) 

[1] 5.6 

# Find the mode. 

# Create the vector. 

> x = c(8,2,7,1,2,9,8,2,10,9) 

> y = table(x) 

> print(y) 

x 

 1  2  7  8  9 10  

 1  3  1  2  2  1 

> names(y)[which(y==max(y))]   # calculate mode 

[1] "2" 

# Testing if there are two or more numbers with same frequency. 

> x = c(8,2,7,1,2,9,8,2,10,9,8) 

> sort(x) 

[1]  1  2  2  2  7  8  8  8  9  9 10 

> names(table(x))[table(x)==max(table(x))]  # calculate mode 

[1] "2" "8" 

# When x is a character vector. 

> x = c("o","it","the","it","it") 

> sort(table(x))   

x 

  o the  it  

  1   1   3  

> names(table(x))[table(x)==max(table(x))] # calculate mode 
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[1] "it" 

#================================================ 

# Mean, Median and Mode using airquality dataset. 

#================================================ 

> dim(airquality) # 153 obs. of  6 variables. 

[1] 153   6 

# Column names with missing Values. 

> names(airquality)[colSums(is.na(airquality)) > 0] 

[1] "Ozone"   "Solar.R" 

> x = airquality$Solar.R # define x. 

> table(is.na(x)) 

FALSE  TRUE  

146     7 

> mean(x) # mean of x can’t be calculated as x is having values NA. 

[1] NA 

> mean(x, na.rm = TRUE) # mean of x after removing NA. 

[1] 185.9315 

> median(x, na.rm = TRUE) # median of x after removing NA. 

[1] 205 

> names(table(x))[table(x)==max(table(x))]     # mode of x. 

[1] "238" "259" 

# produce result summaries. 

> summary(airquality)  # summary statistics. 

    Ozone           Solar.R           Wind             Temp           Month       

 Min.   :  1.00   Min.   :  7.0   Min.   : 1.700   Min.   :56.00   Min.   :5.000   

 1st Qu.: 18.00   1st Qu.:115.8   1st Qu.: 7.400   1st Qu.:72.00   1st Qu.:6.000   
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 Median : 31.50   Median :205.0   Median : 9.700   Median :79.00   Median :7.000   

 Mean   : 42.13   Mean   :185.9   Mean   : 9.958   Mean   :77.88   Mean   :6.993   

 3rd Qu.: 63.25   3rd Qu.:258.8   3rd Qu.:11.500   3rd Qu.:85.00   3rd Qu.:8.000   

 Max.   :168.00   Max.   :334.0   Max.   :20.700   Max.   :97.00   Max.   :9.000   

 NA's   :37       NA's   :7                                                        

      Day       

 Min.   : 1.0   

 1st Qu.: 8.0   

 Median :16.0   

 Mean   :15.8   

 3rd Qu.:23.0   

 Max.   :31.0   

#================================= 

# Variance and Standard Deviation. 

#================================= 

# Find the variance of eruption duration in the data set faithful. 

> duration = faithful$eruptions 

> var(duration)  

[1] 1.3027 

# Find the standard deviation of the eruption duration in the data set # faithful. 

> sd(duration) # Standard Deviation. 

[1] 1.141371 

# Find the skewness of eruption duration in the data set faithful. 

> install.packages("e1071")      # install package e1071.  

> library(e1071)                    # load e1071  

> duration = faithful$eruptions     # eruption durations  

> skewness(duration)                # apply the skewness function 
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[1] -0.41355 

The skewness of eruption duration is -0.41355. It indicates that the eruption duration 

distribution is skewed towards the left. 

# Kurtosis. 

> library(e1071) # load e1071  

> duration = faithful$eruptions # eruption durations 

> kurtosis(duration) # apply the kurtosis function 

[1] -1.5116 

The excess kurtosis of eruption duration is -1.5116, which indicates that eruption duration 

distribution is platykurtic. 

# Simulate 10000 samples from a normal distribution with mean 55, and # standard deviation 

4.5, then compute and interpret the skewness and # kurtosis, and plot the histogram and 

boxplot. 

#Simulation 

> set.seed(0) # fix seed value to get the same sample every time. 

> n.sample = rnorm(n = 10000, mean = 55, sd = 4.5) 

> install.packages("moments") # install package "moments". 

> library(moments)   # load package "moments". 

> skewness(n.sample)   # calculate skewness. 

[1] -0.00236372 

> kurtosis(n.sample)   # calculate kurtosis. 

[1] 2.907761 

# Draw Histogram using hist()function.  

> hist(n.sample) 
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# Produce boxplot using boxplot()function.  

> boxplot(n.sample) 

 

Linear Model 

Suppose we want to model the response Y in terms of three predictors, X1, X2 and X3. One 

general form for the model would be:  

Y = f(X1, X2, X3) + ɛ 

where f is some unknown function and ɛ is the error. ɛ is additive in this instance, but could 

enter in some even more general form. If we assume that f is a smooth, continuous function 

that still leaves a very wide range of possibilities. Even with just three predictors, we 

typically may not have enough data to try to estimate f directly. So we usually have to assume 

that it has some more restricted form, perhaps linear as in:  

Y = β0 + β1X1 + β2X2 + β3X3 + ɛ 
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where βi, i= 0, 1, 2, 3 are unknown parameters. β0 is called the intercept term. Thus the 

problem is reduced to the estimation of four parameters rather than the infinite dimensional f. 

In a linear model the parameters enter linearly - the predictors themselves do not have to be 

linear. For example: 

Y = β0 + β1X1 + β2logX2 + β3X1X3 + ɛ 

is a linear model, but 

Y = β0 + β1X1
β2 + ɛ 

is not. 

Linear Regression Model 

Regression analysis is a statistical methodology that utilizes the relation between two or more 

quantitative variables so that one variable can be predicted from the other, or others. This 

methodology is widely used in business, the social and behavioral sciences, the biological 

sciences including agriculture and fishery research. Depending on the nature of the 

relationships between X and Y, regression approach may be classified into two broad 

categories viz., linear regression models and nonlinear regression models. The response 

variable is generally related to other causal variables through some parameters. The models 

that are linear in these parameters, as discussed in the previous section, are known as linear 

models, whereas in nonlinear models parameters are appear nonlinearly.  

The generic form of a linear regression model is Y = β0 + β1X1 + β2X2 + … + βpXp + ɛ. 

Example 

An experiment was conducted to study the hybrid seed production of bottle gourd (Lagenaria 

siceraria (Mol.) Standl.) Cv. Pusa hybrid-3 under open field conditions during Kharif-2005 at 

ICAR-Indian Agricultural Research Institute, New Delhi. The main aim of the investigation 

was to compare natural pollination and hand pollination under field conditions. The data were 

collected on 10 randomly selected plants from each of natural pollination and hand 

pollination. The data were collected on number of fruit set for the period of 45 days, fruit 

weight (kg), seed yield per plant (g) and seedling length (cm). The data obtained is as given 

below:  

{Here 1 denotes natural pollination and 2 denotes the hand pollination) 

Group No of Fruit 

set (45 days) 

Fruit Weight(Kg) Seed Yield per plant(g) Seedling 

length(cm) 

1 7 1.85 147.70 16.86 

1 7 1.86 136.86 16.77 

1 6 1.83 149.97 16.35 

1 7 1.89 172.33 18.26 

1 7 1.80 144.46 17.90 
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1 6 1.88 138.3 16.95 

1 7 1.89 150.58 18.15 

1 7 1.79 140.99 18.86 

1 6 1.85 140.57 18.39 

1 7 1.84 138.33 18.58 

2 6.3 2.58 224.26 18.18 

2 6.7 2.74 197.50 18.07 

2 7.3 2.58 230.34 19.07 

2 8 2.62 217.05 19 

2 8 2.68 233.84 18 

2 8 2.56 216.52 18.49 

2 7.7 2.34 211.93 17.45 

2 7.7 2.67 210.37 18.97 

2 7 2.45 199.87 19.31 

2 7.3 2.44 214.30 19.36 

  

The function used for regression analysis in R is lm(y~x1+x2+x3+…+xp). To fit a multiple 

linear regression by taking seed yield per plant (sy) as dependent variable and number of fruit 

set (fs), fruit weight (fw) and seedling length (sl) as explanatory variables, use following 

commands: 

> op=lm(formula = sy ~ fs + fw + sl) 

> op 

Call: 

lm(formula = sy ~ fs + fw + sl) 

Coefficients: 

(Intercept)           fs             fw              sl   

   -71.2001       7.2949      85.2960       0.6792   

summary() gives other information related to the regression analysis. 

> summary(op) 

Call: 

lm(formula = sy ~ fs + fw + sl) 

Residuals: 

    Min      1Q  Median      3Q     Max  
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-26.160  -6.226  -1.820  10.397  18.854  

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept) -71.2001    65.0731    -1.094       0.290     

fs            7.2949           5.7217     1.275         0.221     

fw           85.2960         9.9705     8.555        2.3e-07 *** 

sl            0.6792          3.9812     0.171          0.867     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 13.02 on 16 degrees of freedom 

Multiple R-squared:  0.8975, Adjusted R-squared:  0.8782  

F-statistic: 46.68 on 3 and 16 DF,  p-value: 3.887e-08 

From the output we see that the intercept is estimated to -71.2001 with a standard error of 

65.0731.  

Confidence intervals for the regression parameters may be computed by the function confint. 

As default confint computes 95% confidence intervals. 

> confint(op) 

The predicted values and residuals are extracted from linear regression as follows: 

               2.5 %     97.5 % 

(Intercept) -209.148953  66.748804 

fs            -4.834573  19.424435 

fw            64.159471 106.432548 

sl            -7.760656   9.119007 

The predicted values and residuals are extracted from linear regression as follows: 

> pred = predict(op) 

> pred 
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       1        2        3        4        5        6        7        8        9  

149.1130 149.9048 139.7657 153.4756 145.5545 144.4380 153.4009 145.3536 142.8572  

      10       11       12       13       14       15       16       17       18  

149.4282 207.1691 223.6597 215.0685 223.5393 227.9778 218.0751 196.4152 225.5952  

      19       20  

201.9545 203.3240 

> res = resid(op) 

> res 

         1          2          3          4          5          6          7  

 -1.412960 -13.044795  10.204270  18.854354  -1.094502  -6.138035  -2.820937  

         8          9         10         11         12         13         14  

 -4.363551  -2.287168 -11.098182  17.090893 -26.159732  15.271495  -6.489255  

        15         16         17         18         19         20  

  5.862160  -1.555115  15.514829 -15.225200  -2.084546  10.975976  
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Transcriptome Data Analysis 

 

De novo Assembly 

Genome assembly refers to the process of taking a large number of short DNA sequences and 

putting them back together to create a representation of the original chromosomes from 

which the DNA originated. De novo genome assemblies assume no prior knowledge of the 

source DNA sequence length, layout or composition. In a genome sequencing project, the 

DNA of the target organism is broken up into millions of small pieces and read on a 

sequencing machine. These “reads” vary from 20 to 1000 nucleotide base pairs (bp) in length 

depending on the sequencing method used. Typically for Illumina type short read sequencing, 

reads of length 36 - 150 bp are produced. These reads can be either “single ended” as 

described above or “paired end.” Paired end reads are produced when the fragment size used 

in the sequencing process is much longer (typically 250 - 500 bp long) and the ends of the 

fragment are read in towards the middle. This produces two “paired” reads.  

The goal of a sequence assembler is to produce long contiguous pieces of sequence (contigs) 

from these reads. The contigs are sometimes then ordered and oriented in relation to one 

another to form scaffolds. The distances between pairs of a set of paired end reads is useful 

information for this purpose. The mechanisms used by assembly software are varied but the 

most common type for short reads is assembly by de Bruijn graph 

Determining the DNA sequence of an organism is useful in fundamental research into why 

and how they live, as well as in applied subjects. Because of the importance of DNA to living 

things, knowledge of a DNA sequence may be useful in practically any biological research. 

For example, in medicine it can be used to identify, diagnose and potentially develop 

treatments for genetic diseases. Similarly, research into pathogens may lead to treatments for 

contagious diseases 

The protocol in a nutshell: 

 Obtain sequence read file (s) from sequencing machine (s). 

 Look at the reads - get an understanding of what you’ve got and what the quality is 

like. 

 Raw data cleanup/quality trimming if necessary. 

 Choose an appropriate assembly parameter set. 

 Assemble the data into contigs/scaffolds. 

 Examine the output of the assembly and assess assembly quality. 

http://en.wikipedia.org/wiki/DNA_sequence
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Raw read sequence file formats. 

Raw read sequences can be stored in a variety of formats. The reads can be stored as text in 

a Fasta file or with their qualities as a FastQ file. They can also be stored as alignments to 

references in other formats such as SAM or its binary compressed implementation BAM. The 

entire file formats (with the exception of the binary BAM format) can be compressed easily 

and often are stored so (.gz for gzipped files.) 

The most common read file format is FastQ as this is what is produced by the Illumina 

sequencing pipeline. This will be the focus of our discussion henceforth. 

Section 1: Read Quality Control 

Examine the quality of your raw read files. 

We check the following parameters from fastq file 

 Base quality score distribution 

 Sequence quality score distribution 

 Average base content per read 

 GC distribution in the reads 

 Check for over-represented sequences 

Quality trimming/cleanup of read files. 

Based on quality of sequence reads, we trimmed sequence reads where necessary, to retain 

only high quality sequence for further analysis. In addition, the low-quality sequence reads 

were excluded from the analysis from the Trimmed single-end reads; we removed unwanted 

sequences, adapter sequences and others. The trimming and contamination removal step is 

done by Trimmomatic software. 

Trimmomatic should produce 2 pair files (1 left and 1 right hand end) and 1 or 2 single 

“orphaned reads” files if you trimmed a pair of read files using paired end mode. It only 

produces 1 output read file if you used it in single ended mode. Each read library (2 paired 

files or 1 single ended file) should be trimmed separately with parameters dependent on their 

own FastQC reports. The output files are the ones you should use for assembly. 

Section 2: Assembly 

The purpose of this section of the protocol is to outline the process of assembling the quality 

trimmed reads into draft contigs. Most assembly software has a number of input parameters 

which need to be set prior to running. These parameters can and do have a large effect on the 

http://en.wikipedia.org/wiki/FASTA_format
http://en.wikipedia.org/wiki/Fastq
http://genome.sph.umich.edu/wiki/SAM
http://genome.sph.umich.edu/wiki/SAM
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outcome of any assembly. Assemblies can be produced which have less gaps, less or no mis-

assemblies, less errors by tweaking the input parameters. Therefore, knowledge of the 

parameters and their effects is essential to getting good assemblies. In most cases an optimum 

set of parameters for your data can be found using an iterative method. 

To generate a reference assembly that we can later use for analysing differential expression, 

we'll combine the read data sets for the different conditions together into a single target for 

Trinity assembly. We do this by providing Trinity with a list of all the left and right fastq files 

to the --left and --right parameters as comma-delimited like so: 

cat paired_sample1_R1.fastq paired_sample2_R2.fastq>p_sample1_sample2_R1.fastq 

cat paired_sample1_R2.fastq paired_sample2_R2.fastq>p_sample1_sample2_R2.fastq 

Trinity --seqType fq --max_memory 50G --left p_sample1_sample2_R1.fastq --right 

p_sample1_sample2_R2.fastq --CPU 6 --output Trinity.fasta  

Running Trinity on this data set may take 10 to 15 minutes. You'll see it progress through the 

various stages, starting with Jellyfish to generate the k-mer catalog, then followed by 

Inchworm to assemble 'draft' contigs, Chrysalis to cluster the contigs and build de Bruijn 

graphs, and finally Butterfly for tracing paths through the graphs and reconstructing the final 

isoform sequences. 

Just to look at the top few lines of the assembled transcript fasta file, you can run: 

 %   head trinity_out_dir/Trinity.fasta 

 

and you can see the Fasta-formatted Trinity output: 

>TRINITY_DN506_c0_g1_i1 len=171 path=[149:0-170] [-1, 149, -2] 

TGAGTATGGTTTTGCCGGTTTGGCTGTTGGTGCAGCTTTGAAGGGCCTAAAGCCA

ATTGT 

TGAATTCATGTCATTCAACTTCTCCATGCAAGCCATTGACCATGTCGTTAACTCG

GCAGC 

AAAGACACATTATATGTCTGGTGGTACCCAAAAATGTCAAATCGTGTTCAG 

>TRINITY_DN512_c0_g1_i1 len=168 path=[291:0-167] [-1, 291, -2] 

ATATCAGCATTAGACAAAAGATTGTAAAGGATGGCATTAGGTGGTCGAAGTTTC

AGGTCT 

AAGAAACAGCAACTAGCATATGACAGGAGTTTTGCAGGCCGGTATCAGAAATTG

CTGAGT 

AAGAACCCATTCATATTCTTTGGACTCCCGTTTTGTGGAATGGTGGTG 

>TRINITY_DN538_c0_g1_i1 len=310 path=[575:0-309] [-1, 575, -2] 

GTTTTCCTCTGCGATCAAATCGTCAAACCTTAGACCTAGCTTGCGGTAACCAGAG

TACTT 

 



High Dimensional Genome data Analysis by R and Open Source Tools CAAST-2019 

 

 

Page | 50 

The FASTA sequence header for each of the transcripts contains the identifier for the 

transcript (eg. 'TRINITY_DN506_c0_g1_i1'), the length of the transcript, and then some 

information about how the path was reconstructed by the software by traversing nodes within 

the graph. 

It is often the case that multiple isoforms will be reconstructed for the same 'gene'. Here, the 

'gene' identifier corresponds to the prefix of the transcript identifier, such as 

'TRINITY_DN506_c0_g1', and the different isoforms for that 'gene' will contain different 

isoform numbers in the suffix of the identifier (eg. TRINITY_DN506_c0_g1_i1 and 

TRINITY_DN506_c0_g1_i2 would be two different isoform sequences reconstructed for the 

single gene TRINITY_DN506_c0_g1). It is useful to perform certain downstream analyses, 

such as differential expression, at both the 'gene' and at the 'isoform' level, as we'll do later 

below. 

Evaluating the assembly 

There are several ways to quantitatively as well as qualitatively assess the overall quality of 

the assembly. 

Examine assembly stats 

Capture some basic statistics about the Trinity assembly: 

 % $TRINITY_HOME/util/TrinityStats.pl trinity_out_dir/Trinity.fasta 

 

Which should generate data like so. Note your numbers may vary slightly, as the assembly 

results are not deterministic. 

################################ 

## Counts of transcripts, etc. 

################################ 

Total trinity 'genes': 683 

Total trinity transcripts: 687 

Percent GC: 44.39 

 

######################################## 

Stats based on ALL transcript contigs: 

######################################## 

 

Contig N10: 742 

Contig N20: 525 

Contig N30: 423 

Contig N40: 346 

Contig N50: 300 
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Median contig length: 216 

Average contig: 279.85 

Total assembled bases: 192257 

 

##################################################### 

## Stats based on ONLY LONGEST ISOFORM per 'GENE': 

##################################################### 

 

Contig N10: 728 

Contig N20: 524 

Contig N30: 420 

Contig N40: 343 

Contig N50: 296 

 

Median contig length: 215 

Average contig: 278.14 

Total assembled bases: 189969 

 

The 'N50 statistic indicates that at least half of the assembled bases are in contigs of at least 

that contig length'. We extend the N50 statistic to provide N40, N30, etc. statistics with 

similar meaning. As the N-value is decreased, the corresponding length will increase. 

Transcript expression suing RSEM 

To estimate the expression levels of the Trinity-reconstructed transcripts, we use the strategy 

supported by the RSEM software involving read alignment followed by expectation 

maximization to assign reads according to maximum likelihood estimates. In essence, we first 

align the original rna-seq reads back against the Trinity transcripts, then run RSEM to 

estimate the number of rna-seq fragments that map to each contig. Because the abundance of 

individual transcripts may significantly differ between samples, the reads from each sample 

(and each biological replicate) must be examined separately, obtaining sample-specific 

abundance values. 

We include a script to faciliate running of RSEM on Trinity transcript assemblies. The script 

we execute below will run the Bowtie aligner to align reads to the Trinity transcripts, and 

RSEM will then evaluate those alignments to estimate expression values. Again, we need to 

run this separately for each sample and biological replicate (ie. each pair of fastq files). 

Let's start with one of the GSNO treatment fastq pairs like so: 

 %$TRINITY_HOME/util/align_and_estimate_abundance.pl –transcripts Trinity.fasta --

seqType fq --left paired_sample1_R1.fastq --right paired_sample1_R2.fastq --est_method 

RSEM --aln_method bowtie2 --trinity_mode --prep_reference --output_dir 

rsem_outdir_sample1 & 
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%$TRINITY_HOME/util/align_and_estimate_abundance.pl –transcripts Trinity.fasta --

seqType fq --left paired_sample2_R1.fastq --right paired_sample2_R2.fastq --est_method 

RSEM --aln_method bowtie2 --trinity_mode --prep_reference --output_dir 

rsem_outdir_sample2 & 

 

 

The primary output generated by RSEM is the file containing the expression values for each 

of the transcripts. Examine this file like so: 

transcript_id           gene_id              length  effective_length  expected_count  TPM      FPKM      

IsoPct 

TRINITY_DN0_c0_g1_i1    TRINITY_DN0_c0_g1    328     198.75            29.00           

9093.16  43883.19  100.00 

TRINITY_DN0_c0_g2_i1    TRINITY_DN0_c0_g2    329     199.75            0.00            0.10     

0.48      100.00 

TRINITY_DN100_c0_g1_i1  TRINITY_DN100_c0_g1  198     69.79             1.00            

892.99   4309.53   100.00 

TRINITY_DN101_c0_g1_i1  TRINITY_DN101_c0_g1  233     104.12            2.00            

1197.08  5777.04   100.00 

TRINITY_DN102_c0_g1_i1  TRINITY_DN102_c0_g1  198     69.79             0.00            

0.00     0.00      0.00 

TRINITY_DN103_c0_g1_i1  TRINITY_DN103_c0_g1  346     216.72            7.00            

2012.95  9714.40   100.00 

TRINITY_DN104_c0_g1_i1  TRINITY_DN104_c0_g1  264     134.91            1.00            

461.94   2229.29   100.00 

TRINITY_DN105_c0_g1_i1  TRINITY_DN105_c0_g1  540     410.62            19.00           

2883.65  13916.35  100.00 

TRINITY_DN106_c0_g1_i1  TRINITY_DN106_c0_g1  375     245.67            3.00            

761.01   3672.58   100.00 

 

The key columns in the above RSEM output are the transcript identifier, the 'expected_count' 

corresponding to the number of RNA-Seq fragments predicted to be derived from that 

transcript, and the 'TPM' or 'FPKM' columns, which provide normalized expression values 

for the expression of that transcript in the sample. 

The FPKM expression measurement normalizes read counts according to the length of 

transcripts from which they are derived (as longer transcripts generate more reads at the same 

expression level), and normalized according to sequencing depth. The FPKM acronym stand 

for 'fragments per kilobase of cDNA per million fragments mapped'. 

TPM 'transcripts per million' is generally the favored metric, as all TPM values should sum to 

1 million, and TPM nicely reflects the relative molar concentration of that transcript in the 

sample. FPKM values, on the other hand, do not always sum to the same value, and do not 

have the similar property of inherrently representing a proportion within a sample, making 
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comparisons between samples less straightforward. TPM values can be easily computed from 

FPKM values like so: TPMi = FPKMi / (sum all FPKM values) * 1 million. 

Running this on all the samples can be montonous, and with many more samples, advanced 

users would generally write a short script to fully automate this process. We won't be 

scripting here, but instead just directly execute abundance estimation just as we did above but 

on the other five pairs of fastq files. We'll examine the outputs of each in turn, as a sanity 

check and also just for fun 

Generate a transcript counts matrix and perform cross-sample normalization: 

Now, given the expression estimates for each of the transcripts in each of the samples, we're 

going to pull together all values into matrices containing transcript IDs in the rows, and 

sample names in the columns. We'll make two matrices, one containing the estimated counts, 

and another containing the TPM expression values that are cross-sample normalized using the 

TMM method. This is all done for you by the following script in Trinity, indicating the 

method we used for expression estimation and providing the list of individual sample 

abundance estimate files: 

%$TRINITY_HOME/util/abundance_estimates_to_matrix.pl sample1.isoforms.results 

sample2.isoforms.results --est_method RSEM  --out_prefix sample1_sample2.  

 

You should find a matrix file called 'Trinity_trans.counts.matrix', which contains the counts 

of RNA-Seq fragments mapped to each transcript. Examine the first few lines of the counts 

matrix: 

The counts matrix will be used by edgeR (or other tools in Bioconductor) for statistical 

analysis and identifying significantly differentially expressed transcripts. 

Differential expression using edgeR 

The edgeR software is part of the R Bioconductor package, and we provide support for using 

it in the Trinity package. 

Having biological replicates for each of your samples is crucial for accurate detection of 

differentially expressed transcripts. In our data set, we have three biological replicates for 

each of our conditions, and in general, having three or more replicates for each experimental 

condition is highly recommended. 

To detect differentially expressed transcripts, run the Bioconductor package edgeR using our 

counts matrix: 
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%$TRINITY_HOME/Analysis/DifferentialExpression/run_DE_analysis.pl --matrix 

sample1_sample2.counts.matrix --method edgeR --output sample1_sample2_DEG --

dispersion 0.05 

 

 

The files '*.DE_results' contain the output from running EdgeR to identify differentially 

expressed transcripts in each of the pairwise sample comparisons. Examine the format of one 

of the files, such as the results from comparing Sp_log to Sp_plat: 

                        logFC              logCPM            PValue                FDR 

TRINITY_DN530_c0_g1_i1  8.98959066402695   13.1228060448362  8.32165055033775e-

54  5.54221926652494e-51 

TRINITY_DN589_c0_g1_i1  4.89839016049723   13.2154341051504  7.57411107973887e-

53  2.52217898955304e-50 

TRINITY_DN44_c0_g1_i1   2.69777851490106   14.1332252828559  5.23937214153746e-

52  1.16314061542132e-49 

TRINITY_DN219_c0_g1_i1  5.96230500956404   13.4919132973162  5.11512415417842e-

51  8.51668171670708e-49 

TRINITY_DN513_c0_g1_i1  5.67480055313841   12.8660937412604  1.54064866426519e-

44  2.05214402080123e-42 

TRINITY_DN494_c0_g1_i1  8.97722926993194   13.108274725098   3.6100707178792e-

44   4.00717849684591e-42 

TRINITY_DN365_c0_g1_i1  2.71537635410452   14.0482419858984  8.00431159168039e-

41  7.61553074294163e-39 

TRINITY_DN415_c0_g1_i1  6.96733684710045   12.875060733337   3.67004658844109e-

36  3.05531378487721e-34 

TRINITY_DN59_c0_g1_i1   -3.57509574692798  13.1852604213653  3.74452542871713e-

30  2.77094881725068e-28 

These data include the log fold change (logFC), log counts per million (logCPM), P- value 

from an exact test, and false discovery rate (FDR). 

The EdgeR analysis above generated both MA and Volcano plots based on these data. 

 

The red data points correspond to all those features that were identified as being significant 

with an FDR <= 0.05. 
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Trinity facilitates analysis of these data, including scripts for extracting transcripts that are 

above some statistical significance (FDR threshold) and fold-change in expression, and 

generating figures such as heatmaps and other useful plots, as described below. 

Reference Based Assembly 

Reference based assembly is performed when reference genome is available for differential 

gene expression analysis. 

Outline 

1. Quality filter datasets using Trimmomatic.  

2. Assess data quality using FastQC.  

3. Align the RNA-seq reads to the human genome using TopHat2.  

4. Assemble transcripts based on RNA-seq data using cufflinks and cuffmerge.  

5. Compare expression differences using cuffdiff.  

 

Quality Control, Alignment, and Differential Gene Expression 

There are 4 RNA-seq datasets that we’ll use in this exercise. Examine a few lines of each 

library using a different command, such asmore, less, head, and tail. 

 brain_1_fastq.txt 

 brain_2_fastq.txt 

 adrenal_1_fastq.txt 

 adrenal_2_fastq.txt 

2. Assess the quality of the data before quality filtering using FastQC: 

3. Trim adapter sequences and quality filter the RNA-seq data (fastq files) using 

Trimmomatic: 

Trim adapter sequences and quality filter each of the 4 datasets using Trimmomatic. 

$ Trimmomatic-0.32/trimmomatic-0.32.jar PE -phred33 /brain1_1.fastq brain1_2.fastq 

P_brain1_1.fastq U_brain1_1.fastq P_brain1_2.fastq U_brain1_2.fastq 

ILLUMINACLIP:/opt/software/Trimmomatic-0.32/adapters/TruSeq3-PE.fa:2:30:10 

LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36 

4. Examine each of the files after adapter trimming and quality filtering using 

the more or less commands. 

5. Assess the quality of the data after Trimmomatic quality filtering using FastQC: 
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6. Create a bowtie index for the human genome (NOTE: THIS STEP WAS DONE IN 

ADVANCE OF CLASS, BUT YOU WILL NEED TO CREATE A C ELEGANS BOWTIE 

INDEX FOR THE ASSIGNMENT):  

$ bowtie2-build genome.fa human 

7. Run TopHat to align sequences from each of the libraries to the human genome (you 

will run tophat 4 times in total on the 4 fastq files listed below): 

$ tophat -G 'path_to_genome_annotations.gtf' -o 'output_folder'' 

path_to_bowtie_index_for_reference_genome/prefix' 'fastq_file' 

 The directory containing the fastq files is the current working 

directory: /Users/graduatestudent/Documents/RNA-seq. 

 Name the output folders as follows: adrenal1; adrenal2; brain1; brain2 

 The path to the bowtie index is /Users/graduatestudent/Documents/RNA-

seq/hg19_bowtie2/ and the prefix is human. 

 The path to the genome annotations file is /Users/graduatestudent/Documents/RNA-

seq/hg19_bowtie2/hg19_chr19_gene_annotation.gtf. 

 

8. Determine what proportion of the reads from each library were aligned: 

Use the UNIX more command to open each TopHat summary file in the terminal. The 

TopHat summary files are named align_summary.txt and are located in the output folder 

specified in step 5. 

$ more ./adrenal1/align_summary.txt 

$ more ./adrenal2/align_summary.txt 

$ more ./brain1/align_summary.txt 

$ more ./brain2/align_summary.txt 

9. Run cufflinks to assemble transcripts (cufflinks uses the accepted_hits.bam output files 

from TopHat): 

$ cufflinks -o 'output_folder1' 'path_to_library1_accepted_hits.bam' 

$ cufflinks -o 'output_folder2' 'path_to_library2_accepted_hits.bam' 
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$ cufflinks -o 'output_folder3' 'path_to_library3_accepted_hits.bam' 

$ cufflinks -o 'output_folder4' 'path_to_library4_accepted_hits.bam' 

Name the output folders as follows:  

output_folder1: cufflinks_adrenal1  

output_folder2: cufflinks_adrenal2  

output_folder3: cufflinks_brain1  

output_folder4: cufflinks_brain2.  

The paths to the accepted_hits.bam files from the RNA-seq_Data directory are as 

follows:path_to_library1_accepted_hits.bam: ./adrenal1/accepted_hits.bam  

path_to_library2_accepted_hits.bam: ./adrenal2/accepted_hits.bam  

path_to_library3_accepted_hits.bam: ./brain1/accepted_hits.bam  

path_to_library4_accepted_hits.bam: ./brain2/accepted_hits.bam  

10. Merge the assembled transcripts from the four libraries using cuffmerge: 

Create a file called assemblies.txt with the paths to each of the individual assemblies files: 

$ echo ./cufflinks_adrenal1/transcripts.gtf >assemblies.txt 

$ echo ./cufflinks_adrenal2/transcripts.gtf >>assemblies.txt 

$ echo ./cufflinks_brain1/transcripts.gtf >>assemblies.txt 

$ echo ./cufflinks_brain2/transcripts.gtf >>assemblies.txt 

Merge assemblies: 

$ cuffmerge -g 'path_to_genome_annotations.gtf' -s 'path_to_genome_sequence.fa' 

assemblies.txt 

 The path to the genome annotations file is /Users/graduatestudent/Documents/RNA-

seq/hg19_bowtie2/hg19_chr19_gene_annotation.gtf 

 The path to the human genome sequence is /Users/graduatestudent/Documents/RNA-

seq/hg19_bowtie2/human.fa 

You should now have a single file, merged.gtf located in a folder called merged_asm that was 

created by cuffmerge, that contains all of the predicted transcripts based on the sequencing 

data.  

 



High Dimensional Genome data Analysis by R and Open Source Tools CAAST-2019 

 

 

Page | 58 

11. Run cuffdiff to identify genes differentially regulated between the adrenal and brain 

tissue samples: 

 Provide an output_folder name such as cuffdiff_output 

 The path_to_merged.gtf is merged_asm/merged.gtf 

 You will compare the two adrenal libraries to the two brain libraries. Cufflinks uses 

the accepted_hits.bam output files from TopHat. If you are in the RNA-seq_Data 

directory, the paths to these files are as follows: 

 ./adrenal1/accepted_hits.bam 

 ./adrenal2/accepted_hits.bam 

 ./brain1/accepted_hits.bam 

 ./brain2/accepted_hits.bam 

 

EXAMPLE 

$ cuffdiff -o cuffdiff_output -L adrenal,brain merged_asm/merged.gtf 

./adrenal1/accepted_hits.bam,./adrenal2/accepted_hits.bam 

\./brain1/accepted_hits.bam,./brain2/accepted_hits.bam 

$ cuffdiff -o 'output_folder' -L adrenal, brain 'path_to_merged.gtf' 

'library1_replicate1'/accepted_hits.bam,./'library1_replicate2'/accepted_hits.bam 

\'library2_replicate1'/accepted_hits.bam,./'library2_replicate2'/accepted_hits.bam 

Several output files are generated. Explore these on your own. The gene_exp.diff file 

contains a summary of differential gene expression.  

12. Identify which genes are differentially expressed in adrenal and brain tissue: 

 Open the gene_exp.diff file from step 9 using Excel. 

 Sort the data in Excel based on the q value. 
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R-Graphics  

(Practical) 

 
A picture says thousand words. When it comes down to the visualization of the data, R has an 

edge over the existing programming languages. This chapter provides the most basic 

information to get started producing plots in R.  

plot()is the main graphing function. It automatically produces simple plots for vectors, 

functions or data frames. 

Plotting a Vector 

plot(x) will print the elements of the vector x according to their index. 

 

 

 

 

 

 

 

 

 

Common parameters for plot () 

 Specifying labels:  

•main – provides a title  

•xlab – label for the x axis  

•ylab – label for the y axis  

 Specifying range limits: 
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•ylim – 2-element vector gives range for x axis  

•xlim – 2-element vector gives range for y axis 

 It can be seen that the first plot is of circular points and black in colour. This is the 

default colour. 

 We can change the plot type with the argument type. It accepts the following strings 

and has the given effect. 

“p” - points 

“l”  - lines 

“b”  - both points and lines 

“c”  - empty points joined by lines 

“o”  - overplotted points 

“h”  - histogram like vertical lines 

“n”  - does not produce any points or lines 

“s” and “S” – stair steps  



High Dimensional Genome data Analysis by R and Open Source Tools CAAST-2019 

 

Page | 61 

Overlaying Plots Using legend() function 

Calling plot() multiple times will have the effect of plotting the current graph on the same 

window replacing the previous one. However, sometimes it is required to overlay the plots in 

order to compare the results. 

This is made possible with the functions lines() and points() to add lines and points respectively, 

to the existing plot. 

 

What pch argument does in plot function? 

 

Bar Plot 

 Barplots can be created with the barplot(height) function, where height is a vector or 

matrix.  

 If it is a vector, the values determine the heights of the bars in the plot.  
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 If height is a matrix and the option, beside=FALSE then each bar of the plot 

corresponds to a column of height, with the values in the column giving the heights of 

stacked “sub-bars”.  

 
 

 If height is a matrix and beside=TRUE, then the values in each column are juxtaposed 

rather than stacked. By including the option names.arg=(character vector) to label the 

bars. The option horiz=TRUE to createa a horizontal barplot. 
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Can you change the colours in bar-plot? 

 

Pie Chart 

Pie-chart is usually not recommended. However, it can be used in case of percentage and/or 

proportion data. 

Are you interested in 3-D plot? Try pie3D function in plotrix package. 

 

Box Plot 

A boxplot is a standardized way of displaying the distribution of data based on a five number 

summary (“minimum”, first quartile (Q1), median, third quartile (Q3), and “maximum”). It can 

tell about the outliers and what their values are. It can also tell  if the data is symmetrical. 
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 Can you tell why there are 3 boxes only? 

 Is there any outlier present in the plot? 

 Can you spot the second quartile? 

 

Histogram and Density Plot 

Histogram is a very important tool to know about the distribution of the data. 
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Density plot can be made by the help of density function. 
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Test of Significance 
 

 

1.    Introduction 

In applied investigations, one is often interested in comparing some characteristic (such as 

mean or variance) of a group with a specified value, or in comparing two or more groups with 

regard to the characteristic. For instance, one may want to know whether mean timber yield 

obtained from recently felled plantations of a particular age in a particular management unit 

is some specified value, one may wish to know whether average yield of a crop in a certain 

district is equal to a specified value, one may wish to compare two species of trees with 

regard to mean height, to know if genetic fraction of total variation in a strain is more than a 

given value. In making such comparisons, one can not rely on mere numerical magnitudes of 

index of comparison such as mean and variance. This is because each group is represented 

only by a sample of observations and if another sample were drawn, the numerical value 

would change. This variation between samples from the same population can at best be 

reduced in a well-designed controlled experiment but can never be eliminated. One is forced 

to draw inferences in presence of sampling fluctuations which affect observed differences 

between groups, clouding real differences. Statistical science provides an objective procedure 

for distinguishing whether observed difference connotes any real difference among groups. 

Such a procedure is called testing of hypothesis. Thus, in short, testing of hypothesis is a 

method of making due allowance for sampling fluctuation affecting results of experiments or 

observations. These tests have wide applications in agriculture, forestry, medicine, industry, 

social sciences, etc.  

1.1   Definitions 

Statistical Hypothesis: It is an assumption either about the form or about the parameters of a 

distribution. For example, average height of a particular species of tree is 50 feet, normal 

distribution has mean 20.  

If all the parameters are completely specified, hypothesis is called a simple hypothesis, 

otherwise it is a composite hypothesis. For example, average height of tree is 50 feet is a 

simple hypothesis and average height of tree is greater than 50 feet is a composite hypothesis. 

Null Hypothesis (H0): The hypothesis under test for a sample study is called Null hypothesis 

(H0). It represents a theory that has been put forward, either because it is believed to be true 

or because it is to be used as a basis for argument, but has not been proved. For example, in a 

clinical trial of a new drug, null hypothesis might be that the new drug is, on average, as 

effective as the current drug i.e. H0: Effect of the two drugs, on the average, is same.  
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Alternative Hypothesis (H1): Any null hypothesis is tested against a rival, which is called 

Alternative hypothesis (H1). For example, mean height () of trees of a particular species in a 

region is some specified value 0, i.e.  

H0:   = 0. 

Alternative hypothesis could be any of the following: 

 H1:    0       (Two-tailed) 

         < 0       (Left-tailed) 

         > 0       (Right-tailed) 

For framing a suitable H0 and H1, four possibilities in order of preference are the following: 

Possibilities H0 H1 

(i) Simple Simple 

(ii) Simple Composite 

(iii) Composite Simple 

(iv) Composite Composite 

 

The first one when both are simple is of little practical importance. As Possibility (ii) is 

preferred over Possibility (iii), therefore hypotheses should always be structured in such a 

way that H0 is simple and H1 is composite. 

 

Two Types of Errors 

 

True Situation  
  

Decision Made  
H0 is True H0 is False 

Reject H0 Type I error Correct decision 

Accept H0 Correct decision Type II error 

 

Probabilities of these types of error are respectively denoted by  and , i.e. 

Probability of Type I error =   

and  Probability of Type II error = . 

The ideal procedure of hypothesis testing is to minimize both  and . However, this is not 

possible in practice because a test which minimizes one type of error, maximizes the other 

type of error. As Type I error is considered to be more serious than Type II error, therefore 

probability of Type I error is fixed and probability of Type II error is minimized. Generally,  

is taken to be 5% or 1%. 
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Level of Significance (): It is the size of Type I error. The higher the value of , less 

precise is the result. 

Confidence Interval: The confidence interval of a parameter with confidence coefficient 

100(1-)% is the interval (a, b) such that it is expected to lie in this interval in 100(1-)% 

cases. 

 Test Statistic: A test statistic is a quantity calculated from data. Its value is used to decide 

whether or not the null hypothesis should be rejected. 

Critical Value(s): The critical value(s) is that value with which value of test statistic in a 

sample is compared to determine whether or not the null hypothesis is rejected. The critical 

value for any hypothesis test depends on significance level  at which the test is carried out, 

and whether the test is one-sided or two-sided. 

 

   
        

 

 

 

Power of a Test: It is defined as the probability of rejecting H0 when it is false. Thus, 

Power = 1 -   

Among a given set of tests, best test is one having maximum power.  

Steps in Hypothesis Testing 

 State statistical hypotheses 

 Check assumptions  

 Calculate test statistic 

 Set the test criteria  

 Interpret the results 

We now discuss some tests of hypothesis that are based on normal, t, F and chi-square 

distributions. 

 

Shaded Area =    

Critical Value (one-sided) 
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2.    Test of Significance for Large Samples 

For large n (sample size), almost all the distributions can be approximated very closely by a 

normal probability curve, we therefore use the normal test of significance for large samples. 

If t is any statistic (function of sample values), then for large sample 

 

 (0.1) N     
V(t)

E(t) -t 
 Z  

 

Thus if the discrepancy between the observed and the expected (hypothetical) value of a 

statistic is greater than Z times the standard error (S.E), hypothesis is rejected at  level of 

significance.  Similarly if 

 

 t – E(t)   Z  S.E(t), 
 

the deviation is not regarded significant at 5% level of significance. In other words the 

deviation t - E(t), could have arisen due to fluctuations of sampling and the data do not 

provide any evidence against the null hypothesis which may, therefore be accepted at  level 

of significance.   

If Z  1.96, then the hypothesis H0 is accepted at 5% level of significance. Thus the steps 

to be used in the normal test are as follows: 

i) Compute the test statistic Z under H0. 

ii) If Z > 3, H0 is always rejected 

iii) If Z < 3, we test its significance at certain level of significance 

The table below gives some critical values of Z:  

 

Level of Significance Critical Value (Z) of Z 

Two-tailed test Single tailed test 

10% 1.645 1.280 

 5% 1.960 1.645 

 1% 2.580 2.330 

 

2.1   Test for Single Mean 

A very important assumption underlying the tests of significance for variables is that the 

sample mean is asymptotically normally distributed even if the parent population from which 

the sample is drawn is not normal. 
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If xi ( i =1,,n) is a random sample of size n from a normal population with mean   and 

variance 2, then the sample mean is distributed normally with mean  and variance 
n

2σ
. 

Based on this random sample, our aim is to test that mean of the population has a specified 

value 0, i.e.  
 

H0:   = 0  
 

The alternative hypothesis could be any of the following: 

H1:    0  (two tailed)      

              < 0  (left tailed)    

                  > 0  (right tailed)     

 

Test Statistic:  

n/

μx
Z 0




  

follows a standard normal distribution. 

 

Test Criteria: Depending on the alternative hypothesis selected, the test criteria are as 

follows: 
 

 

H1 Test 
Reject H0 at level of 

significance  if 

  0 Two-tailed  Z> Z/2 

 < 0 Left-tailed  Z < -Z 

 > 0 Right-tailed Z > Z 

 

Z is the table value of Z at level of significance . If 2 is unknown, then it is estimated by 

sample variance s2 (for large n), where 2
n

1i
i

2 )x(x
1n

1
s 


 



 

 

Example 2.1: The mean timber yield obtained from 30 recently felled plantations at the age 

of 50 years in a particular management unit is 93 m3/ha with a standard deviation of 10 

m3/ha. Test whether the mean timber yield is 100 m3/ha based on past records. 

Solution: H0 :   = 100 m3/ha, H1:     100 m3/ha (two tailed test). 

Here, x 93 m3/ha., n = 30,  = 100 m3/ha and  = 10 m3/ha. 
 

Thus, 

 834.3

30
10

10093



Z  
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Since Z > 1.96, we conclude that the data does not provide any evidence in favour of the 

null hypothesis H0 may therefore be rejected at 5% level of significance. Hence the decision 

would be to accept the alternative hypothesis that there has been significant decline in the 

productivity of the management unit with respect to the plantations of the species considered.  

 

Note: The value of sample mean is an acceptable value of population mean if the statistic Z 

lies between -Z/2 to Z/2, i.e. 

 -Z/2 
n/

μx




 Z/2. 

Thus, 100(1-)% confidence-interval for  is  

( )n/ Zx  ,n/ Zx 2/2/   . 

 

2.2 Test for Difference of Means 

Let )x( x 21 be the mean of a sample of size n1 (n2) from a population with mean 1 (2) and 

variance )(σ σ 2

2

2

1 .  Our aim is to test 

H0 :  1 = 2 

against H1 :  1  2   

          1 > 2   

          1 < 2   
 

Test Statistic:   

 (0,1) N ~  

 
n

σ

n

σ

)xx(
Z

2

2
2

1

2
1

2 1




  

follows a standard normal distribution  
 

Test Criteria: 
 

H1 Test 
Reject H0 at level of 

significance  if 

1  2 Two-tailed Z> Z/2 

1 < 2 Left-tailed Z < -Z 

1> 2 Right-tailed Z > Z 

 

   

 
n

1
  

n

1
σ

)xx(
Z

21

2 1




 , If 

22

1 σ  σσ  2

2  

If  is not known, then its estimate is used  



High Dimensional Genome data Analysis by R and Open Source Tools CAAST-2019 

 

Page | 72 

2n  n

1)s-(n  1)s-(n
 s 

21

2
22

2
112

^
2




  

 

2.3 Test for Single Proportion 

Suppose in a sample of size n (>30), x be the number of successes. Then observed proportion 

of successes = pn/x  . Let P be the population proportion. The hypothesis to be tested is 

that population proportion is some specified value P0, i.e. 
 

 H0: P = P0 

 H1: P  P0   

       P > P0   

       P < P0   

 

Test Statistic:   

 
)/nP-(1P

P - p
  Z

00

0  

 

follows approximately a standard normal distribution. 

 

Test Criteria: 
 

H1 Test 
Reject H0 at level of 

significance  if 

P  P0 Two-tailed Z> Z/2 

P < P0 Left-tailed Z < -Z 

P> P0 Right-tailed Z > Z 

 

Example 2.2: In a sample of 1000 people, 540 are rice eaters and the rest are wheat eaters. 

Can we assume that both rice and wheat are equally popular at 1% level of significance? 

Solution: It is given that n = 1000, x = Number of rice eaters = 540, p = sample proportion of 

rice eaters = 0.54  1000/540  . 

H0 : Both rice and wheat are equally popular, i.e. P = 0.5 

H1 : P  0.5 
 

2.532  
0.5/1000 x 0.5

0.5 - 0.54
   

)/nP-(1P

P - p
   Z

00

0   

 

Tabulated value of Z at 1% level of significance is 2.575. Since Z < 2.575, therefore H0 is 

not rejected and we conclude that rice and wheat are equally popular. 
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2.4 Test for Difference of Proportions 

Suppose we want to compare two populations with respect to the prevalence of a certain 

attribute A. Let x1 (x2) be the number of persons possessing the given attribute A in random 

sample of size n1 (n2) from 1st (2nd) population. Then sample proportions will be 
 

2

2
2

1

1
1

n

x
p  ,

n

x
p   

Let P1 and P2 be the population proportions. Our aim here is to test that there is no significant 

difference between population proportions, i.e. 
 

H0: P1 = P2  

 H1: P1  P2   

       P1 > P2   

       P1 < P2   

 

Test Statistic:   

 

Z = 

)
n

QP

n

QP
(

pp

2

22

1

11

21




   

 

follows approximately a standard normal distribution. In case P1 =P2 = P (say) and P is not 

known, it is estimated as follows: 
 

 
21

2211

nn

pnpn
P̂




  

 

Test Criteria: 
 
 

H1 Test 
Reject H0 at level of 

significance  if 

P1  P2   Two-tailed Z> Z/2 

P1 < P2   Left-tailed Z < -Z 

P1 > P2   Right-tailed Z > Z 

Consider an experiment on rooting of stem cuttings of Casuarina equisetifolia wherein the 

effect of dipping the cuttings in solutions of IBA at two different concentrations was 

observed. Two batches of 30 cuttings each, were subjected dipping treatment at 

concentrations of 50 and 100 ppm of IBA solutions respectively. Based on the observations 

on number of cuttings rooted in each batch of 30 cuttings, the following proportions of rooted 

cuttings under each concentration were obtained. At 50 ppm, the proportion of rooted 

cuttings was 0.5 and at 100 ppm, the proportion was 0.37. Test whether the observed 
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proportions are indicative of significant differences in the effect of IBA at the two 

concentrations.  

Here, p1 = 0.5 and p2 = 0.37. Then q1 = 0.5, q2 = 0.63. The value of n1 = n2 = 30. Thus,  

 

024.1

30

3)(0.37)(0.6

30

(0.5)(0.5)

37.05.0
Z 




  

 

Since the calculated value of Z (1.024) is less than the table value (1.96) at 5% level of 

significance, we can conclude that there is no significant difference between proportion 

rooted cuttings under the two concentration levels. 

 

3.    Test of Significance for Small Samples 

In this section, the statistical tests based on t, 2 and F are given. 

3.1    Tests Based on t-Distribution 
 

3.1.1 Test for an Assumed Population Mean 

Suppose a random sample x1,..,xn of size n (n2) has been drawn from a normal population 

whose variance 2 is unknown. On the basis of this random sample the aim is to test 

H0 :   = 0 

H0 :    0   

   > 0   

   < 0   
 

Test statistic: 

 t = 1n
0 t~

ns/

μx



, 

where 



n

1i

ix
n

1
x  and 2

n

1i
i

2 )x(x
1n

1
s 


 



 

 

The table giving the value of t required for significance at various levels of probability and 

for different degrees of freedom are called the t – tables which are given in Statistical Tables 

by Fisher and Yates. The computed value is compared with the tabulated value at  percent 

level of significance and at (n-1) degrees of freedom and accordingly the null hypothesis is 

accepted or rejected. 

 

3.1.2 Test for the Difference of Two Population Means 

Let )x(x 21  be the sample mean of a sample of size n1 (n2) from a population with mean 1 

(2) and variance of the two population be same 2, which is unknown. Our aim is to test 
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H0 :   1 = 2 

H1 :   1  2  or  1 > 2  or 1 < 2   
 

Let 2
is , i =1, 2 be sample variances of the two samples. Then common unknown population 

variance 2 is estimated as 

 

2nn

 1)s(n  1)s(n
s

21

2
22

2
112




  

 

Test Statistic:   

21

21

n

1

n

1
s

xx
t




  

which follows a t-distribution with n1 + n2 -2 d.f. 

 

 

Test Criteria: 

H1 Test 
Reject H0 at level of 

significance  if 

1  2 Two-tailed t> )2/(t 2nn 21
  

1 < 2 Left-tailed  t < - )(t 2nn 21
  

1> 2 Right-tailed  t > )(t 2nn 21
  

This test statistic is used under certain assumptions viz., (i) The variables involved are 

continuous (ii) The population from which the samples are drawn follow normal distribution 

(iii) The samples are drawn independently (iv) The variances of the two populations from 

which the samples are drawn are homogeneous (equal). The homogeneity of two variances 

can be tested by using F-test. 

Example 3.1: A group of 5 plots treated with nitrogen at 20 kg/ha. yielded 42, 39, 48, 60 and 

41 kg whereas second group of 7 plots treated with nitrogen at 40 kg/ha. yielded 38, 42, 56, 

64, 68, 69 and 62 kg. Can it be concluded that nitrogen at level 40 kg/ha. increases the yield 

significantly?  

Solution: H0: 1 = 2 , H1:  1 < 2  

Here,   

 

 

 

 

 

46,x1  ,57x 2  6.121s2 

10t~1.7- 

)
7

1

5

1
(6.121

5746
t 





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Since |t| < 1.81 (value of t at 5% and 10 d.f), the yield from two doses of nitrogen do not 

differ significantly. 

3.1.3     Paired t-test for Difference of Means 

When the two samples are not independent but the sample observations are paired together, 

then this test is applied. The paired observations are on the same unit or matching units. For 

example, to know the impact of a new teaching method on the performance of students, the 

observations, in terms of marks, are collected before and after the new teaching method is 

implemented. Let (xi, yi), i = 1,…,n be the pairs of observations and let di = xi - yi. Our aim is 

to test 
 

H0 :  1 = 2  

H1 :  1  2   

         1 > 2   

        1 < 2   

 

Test Statistic:  
 

  
n/s

d
t

d

  

follows t distribution with n-1 d.f., where 



n

1i
id  

n

1
  d and 







n

1i

2
i

2
d )d(d 

1n

1
s . 

 

Test Criteria: 
 

 

H1 Test 
Reject H0 at level of 

significance  if 

1  2 Two-tailed t> )2/(t 1n   

1 < 2 Left-tailed t < - )(t 1n   

1> 2 Right-tailed t > )(t 1n   

 

3.1.4 Test for Significance of Observed Correlation Coefficient 

Given a random sample (xi, yi) , i = 1,…, n from a bivariate normal  population. We want to 

test the null hypothesis that the population correlation coefficient is zero i.e. 

        H0 :  = 0 

        H1 :   0 

 

Test Statistic: 

2n
2

   t~  
r1

2nr
t 




 , 

where r is the sample correlation coefficient. H0 is rejected at level  if 
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          t > tn-2 (/2) 

This test can also be used for testing the significance of rank correlation coefficient. 

 

3.2  Test of Significance Based on Chi-Square Distribution 

 

3.2.1 Test for the Variance of a Normal Population 

Let x1, x2,…,xn (n2) be a random sample from a normal population with mean  and 

variance 2. On the basis of this sample our aim is to test 

H0 : 2
0

2 σσ   

against H1 : 
2
0

2 σσ   

         2
0

2 σσ   

        2
0

2 σσ   

 

Test Statistic:  

 
σ

μx
2

0

i
n

1i

2










 
 



 

follows a chi-square distribution with n d.f. when  is known, and 

 
σ

xx
2

0

i
n

1i

2










 
 



 = 
2
0

2s)1n(




 

follows a chi-square distribution with n-1 d.f. when  is not known. 

 

Test Criteria: 
 

H1 Test 
Reject H0 at level of significance  if 

 is known  is not known 
2
0

2 σσ   Two-tailed 2 < )2/1(2
n  or 

2 > )2/(2
n   

2 < )2/1(2
1n   or 

2 > )2/(2
1n    

2
0

2 σσ   Left-tailed  2 < )1(2
n   2 < )1(2

1n    

2
0

2 σσ   Right-tailed 2 > )(2
n   2 > )(2

1n    

 

Tables are available for 2 at different levels of significance and with different degrees of 

freedom. 

3.2.2 Test for Goodness of Fit 

A test of wide applicability to numerous problems of significance in frequency data is the 2 

test of goodness of fit. It is primarily used for testing the discrepancy between the expected 

and the observed frequency, For instance, one may be interested in testing whether a variable 

like the height of trees follows normal distribution. A tree breeder may be interested to know 
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whether the observed segregation ratios for a character deviate significantly from the 

Mendelian ratios. In such situations, we want to test the agreement between the observed and 

theoretical frequencies. Such a test is called a test of goodness of fit.  

H0 : the fitted distribution is a good fit to the given data 

H1 : not a good fit. 

 

Test statistic: If Oi and Ei, i =1,…,n are respectively the observed and expected frequency of 

ith class, then the statistic 

  2
1-r-n

i

2
ii

n

1i

2   ~ 
E

 EO



 



 

where r is the number of parameters estimated from the sample, n is the number of classes 

after pooling. H0 is rejected at level  if calculated 2 > tabulated 
2

1-r-n  (). 

 

Example 3.2: In an F2 population of chillies, 831 plants with purple and 269 with non-purple 

chillies were observed.  Is this ratio consistent with a single factor ratio of 3:1?  

Solution: On the hypothesis of a ratio of 3:1, the frequencies expected in the purple and non-

purple classes are 825 and 275 respectively. 
 

 Frequency 

 Observed (Oi) Expected (Ei) Oi - Ei 

Purpose 831 825 6 

Non-purple 269 275 -6 
 

0.17
E

)E(O2

1i i

2
ii2 


 



. 

Here 2 is based on one degree of freedom. It is seen from the table that the value of 0.17 for 

2 with 1 d.f corresponds to a level of probability which lies between 0.5 and 0.7. It is 

concluded that the result is non-significant. 

3.2.3 Test of Independence 

Another common use of the 2 test is in testing independence of classifications in what are 

known as contingency tables. When a group of individuals can be classified in two ways, the 

result of the classification in two ways the results of the classification can be set out as 

follows: 

Contingency table 

Class A1 A2 A3 

B1 n11 n21 n31 

B2 n12 n22 n32 

B3 n13 n23 n33 
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Such a table giving the simultaneous classification of a body of data in two different ways is 

called contingency table. If there are r rows and c columns the table is said to be an r x c 

table. 

H0: the attributes are independent 

H1: they are not independent 

Test statistic: 

2
1)-(c 1)-(r

c

1j

r

1i ij

2
ijij2   ~    

E

)E - (O
     

 

 

H0  is rejected at level  if  
2

1)-(c 1)-(r
2       

 
 

3.3     Test of Significance Based on F-Distribution 

3.3.1   Test for the Comparison of Two Population Variances 

Let xi , i = 1,…,n1 and xj, j=1,…,n2 be the two random samples of sizes n1 and n2 drawn from 

two independent normal populations N )σ,μ( 2
11  and N )σ,μ( 2

21  respectively. 2
2

2
1 s and  s   are 

the sample variances of the two samples. 











21 n

1j

2
2j

2

2
2

n

1i

2
1i

1

2
1 )x(x

1n

1
s  and)x(x

1n

1
s  





21 n

1j
j

2

2

n

1i
i

1

1 x
n

1
x    ,x

n

1
x  

H0 : 
2
2

2
1σ   

 

Test statistic: Assuming 
2
2

2
1 ss   

F = 12n 1,1n2
2

2
1 F  ~  

s

s
    

Tables are available giving the values of F required for significance at different levels of 

probability and for different degrees of freedom. The computed value of F is compared with 

the tabulated value and the inference is drawn accordingly. 

3.3.2   Test for Homogeneity of Several Population Means  

The test of significance based on t-distribution is an adequate procedure only for testing the 

significance of the difference between two sample means. In a situation when we have three 

or more samples to consider at a time, an alternative procedure is needed for testing the 

hypothesis that all the samples are drawn from the same population i.e. they have the same 

mean. For Example, 5 fertilizers are applied to four plots each of wheat and yield of wheat on 

each of the plot is obtained. The interest is to find whether effects of these fertilizers on the 

yields is significantly different or in other words, whether the samples have come from the 
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same normal population. This is done through F-test that uses the technique of Analysis of 

Variance (ANOVA).   

ANOVA is the technique of partitioning the total variability into different known 

components. It consist in the estimation of the amount of variation due to each of the 

independent factors (causes) separately and then comparing these estimates due to assignable 

factors with the estimate due to chance factor or experimental error. The F statistic used for 

testing the hypothesis H0:  1 = 2 =…=k (k>2) is 

 

 
samples within theVariation 

means sample  theamong Variationa
F   
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Testing of Hypothesis and Analysis of Experimental Data Using R 

(Practical) 

 

We shall use the following data for practical exercise. 

Table 1: Experimental data 1 

A B Treatment C Replication y x1 x2 

1 0 1 1 1 200.63 16.25 1437.03 

1 1 2 1 1 210.26 19.32 257.79 

2 0 3 1 1 220.37 20.11 985.84 

2 1 4 1 1 232.56 22.45 235.14 

3 0 5 1 1 274.53 20.14 2703.29 

3 1 6 1 1 285.65 29.66 2395.38 

4 0 7 1 1 305.21 25.44 805.24 

4 1 8 1 1 318.25 30.11 12.61 

5 0 9 1 1 326.21 29.33 482.57 

5 1 10 1 1 354.22 32.89 1533.83 

6 0 11 1 1 389.46 28.54 1737.38 

6 1 12 1 1 408.25 35.99 2992.04 

1 0 1 1 2 205.32 16.45 788.46 

1 1 2 1 2 210.35 19.45 1456.53 

2 0 3 1 2 242.15 21.24 1038.41 

2 1 4 1 2 235.15 24.88 3997.30 

3 0 5 1 2 276.24 21.56 2136.88 

3 1 6 1 2 286.98 28.47 1709.14 

4 0 7 1 2 305.89 25.76 230.07 

4 1 8 1 2 320.99 30.89 1097.22 

5 0 9 1 2 324.46 29.44 50.80 

5 1 10 1 2 356.23 33.45 1571.24 

6 0 11 1 2 384.51 29.34 570.67 

6 1 12 1 2 406.32 36.48 2941.11 

1 0 1 1 3 209.46 16.82 1112.74 

1 1 2 1 3 212.35 20.25 857.16 

2 0 3 1 3 245.13 22.56 1012.13 

2 1 4 1 3 245.69 24.56 2116.22 

3 0 5 1 3 275.12 22.20 2420.09 

3 1 6 1 3 285.36 30.25 2052.26 

4 0 7 1 3 307.12 26.58 517.66 

4 1 8 1 3 318.47 31.28 554.92 

5 0 9 1 3 325.89 28.78 266.69 
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5 1 10 1 3 354.36 27.56 1552.53 

6 0 11 1 3 385.21 28.48 1154.03 

6 1 12 1 3 410.30 36.59 2966.58 

1 0 1 2 1 180.63 151.30 279.77 

1 1 2 2 1 190.89 197.80 2526.36 

2 0 3 2 1 200.69 203.00 446.91 

2 1 4 2 1 212.32 215.90 509.46 

3 0 5 2 1 254.37 235.70 1042.70 

3 1 6 2 1 265.21 289.40 1657.35 

4 0 7 2 1 287.32 300.20 1265.38 

4 1 8 2 1 298.25 324.10 1425.13 

5 0 9 2 1 309.20 334.60 444.48 

5 1 10 2 1 334.16 367.40 1234.54 

6 0 11 2 1 364.25 398.80 1204.76 

6 1 12 2 1 389.54 410.20 1056.76 

1 0 1 2 2 185.23 153.20 127.17 

1 1 2 2 2 190.46 195.20 2010.78 

2 0 3 2 2 202.48 204.00 1222.44 

2 1 4 2 2 215.35 218.70 3474.77 

3 0 5 2 2 256.15 240.10 5419.45 

3 1 6 2 2 264.39 284.10 1126.48 

4 0 7 2 2 288.45 301.90 2709.71 

4 1 8 2 2 298.15 326.10 3632.18 

5 0 9 2 2 315.24 338.40 1435.03 

5 1 10 2 2 336.25 366.00 2107.45 

6 0 11 2 2 365.78 399.10 2472.92 

6 1 12 2 2 390.68 412.60 2648.27 

1 0 1 2 3 189.46 150.00 203.47 

1 1 2 2 3 192.35 195.40 2268.57 

2 0 3 2 3 204.57 206.50 834.67 

2 1 4 2 3 234.22 219.40 1992.12 

3 0 5 2 3 254.22 238.10 3231.07 

3 1 6 2 3 266.49 287.30 1391.91 

4 0 7 2 3 289.55 37.40 1987.55 

4 1 8 2 3 301.49 328.60 2528.65 

5 0 9 2 3 318.24 334.10 939.75 

5 1 10 2 3 337.46 369.80 1671.00 

6 0 11 2 3 363.26 393.50 1838.84 

6 1 12 2 3 390.26 415.70 1852.52 
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1.1 Steps to be followed for testing of hypothesis 

1. Start RStudio. 

2. Set working directory by typing and running the following code in the editor 

setwd(path)  

#Here path is path to the directory, for example "D:/project1/data/" 

3. Import the data running the following code  

 d1 = read_xlsx("expdata.xlsx", "Sheet1") 

4. See the structure of the data with the following code 

 str(d1) 

Classes ‘tbl_df’, ‘tbl’ and 'data.frame': 72 obs. of  8 variables: 

 $ A          : num  1 1 2 2 3 3 4 4 5 5 ... 

 $ B          : num  0 1 0 1 0 1 0 1 0 1 ... 

 $ Treatment  : num  1 2 3 4 5 6 7 8 9 10 ... 

 $ C          : num  1 1 1 1 1 1 1 1 1 1 ... 

 $ Replication: num  1 1 1 1 1 1 1 1 1 1 ... 

 $ y          : num  201 210 220 233 275 ... 

 $ x1         : num  16.2 19.3 20.1 22.4 20.1 ... 

 $ x2         : num  1437 258 986 235 2703 ... 

 

5. Convert A, B, C, Treatment into factors using the code 

d1 = within(d1, 

       { 

         A = factor(A) 

         B = factor(B) 

         C = factor(C) 

         Treatment = factor(Treatment) 

         Replication = factor(Replication) 

       }) 

 

6. Perform one sample t-test. For example, to test that population mean of y is equal to 20 

versus alternative that the mean is not 20, use the code 

t.test(d1$y, mu = 20) 
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Output: 

 One Sample t-test 

 

data:  d1$y 

t = 34.289, df = 71, p-value < 2.2e-16 

alternative hypothesis: true mean is not equal to 20 

95 percent confidence interval: 

 270.5266 301.4622 

sample estimates: 

mean of x  

 285.9944  
 

7. Perform two independent sample t-test. For example, to test that population mean of y is 

equal for the two levels of B, use the code: 

 

t.test(y ~ B, data = d1, var.equal = TRUE) 

 Two Sample t-test 

 

data:  y by B 

t = -0.94396, df = 70, p-value = 0.3484 

alternative hypothesis: true difference in means is not equal to 0 

95 percent confidence interval: 

 -45.62351  16.31051 

sample estimates: 

mean in group 0 mean in group 1  

       278.6661        293.3226 
 

2. R for analysis of experimental data 

We shall use the data in Table 1 to analyze data using R.  

 

Install the following packages in RStudio. 

 

agricolae 

emmeans 

multcompView 

 

2.1 Steps for analysis from CRD 

The data in Table 1 is from an experiment using a completely randomized design with 12 treatments. 

 

1. Follow steps 1 to 6 of Section 1. 
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2. Write the following codes in editor and run them. 

result1 = lm(y ~ Treatment, data = d1) 

anova(result1) 

 

Output: 

Analysis of Variance Table 

 

Response: y 

          Df Sum Sq Mean Sq F value    Pr(>F)     

Treatment 11 299123 27193.0   191.9 < 2.2e-16 *** 

Residuals 60   8502   141.7                       

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

3. Write the following code in editor and run it. 

LSD.test(result1, "Treatment", console = TRUE) 

Output: 

Study: result1 ~ "Treatment" 

 

LSD t Test for y  

 

Mean Square Error:  141.7056  

 

Treatment,  means and individual ( 95 %) CI 

 

          y       std r      LCL      UCL     Min     Max 

1  195.1217 11.660077 6 185.4006 204.8427 180.633 209.458 

10 345.4442 10.472961 6 335.7231 355.1652 334.158 356.231 

11 375.4112 12.175071 6 365.6901 385.1322 363.255 389.456 

12 399.2232 10.015863 6 389.5021 408.9442 389.540 410.298 

2  201.1103 10.865020 6 191.3893 210.8314 190.457 212.354 

3  219.2308 20.182929 6 209.5098 228.9519 200.689 245.126 

4  229.2148 12.810761 6 219.4938 238.9359 212.321 245.690 

5  265.1033 11.199877 6 255.3823 274.8244 254.215 276.235 

6  275.6783 11.333499 6 265.9573 285.3994 264.389 286.976 

7  297.2572  9.704150 6 287.5361 306.9782 287.320 307.124 

8  309.2650 11.028341 6 299.5440 318.9860 298.147 320.986 

9  319.8727  6.861633 6 310.1516 329.5937 309.200 326.210 

 

Alpha: 0.05 ; DF Error: 60 
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Critical Value of t: 2.000298  

 

least Significant Difference: 13.74762  

 

Treatments with the same letter are not significantly different. 

 

          y groups 

12 399.2232      a 

11 375.4112      b 

10 345.4442      c 

9  319.8727      d 

8  309.2650     de 

7  297.2572      e 

6  275.6783      f 

5  265.1033      f 

4  229.2148      g 

3  219.2308      g 

2  201.1103      h 

1  195.1217      h 
 

4. Write the following code in editor and run. 

cv.model(result1) 

Output: 

[1] 4.162325 

 

2.2 Steps for analysis from RCBD 

The data in Table 1 is from an experiment using a randomized complete block design with 12 

treatments and 3 blocks. Within each block, 12 treatments appear once. 

 

1. Follow steps 1 to 6 of Section 1. 

2. Write the following codes in editor and run them. 

result2 = lm(y ~ Replication + Treatment, data = d1) 

anova(result2) 

 

Output 

Analysis of Variance Table 

 

Response: y 
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            Df Sum Sq Mean Sq  F value Pr(>F)     

Replication  2    223   111.7   0.7829 0.4619     

Treatment   11 299123 27193.0 190.5089 <2e-16 *** 

Residuals   58   8279   142.7                     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

3. Write the following code in editor and run. 

LSD.test(result2, "Treatment", console = TRUE) 

Output 

Study: result2 ~ "Treatment" 

 

LSD t Test for y  

 

Mean Square Error:  142.7386  

 

Treatment,  means and individual ( 95 %) CI 

 

          y       std r      LCL      UCL     Min     Max 

1  195.1217 11.660077 6 185.3583 204.8850 180.633 209.458 

10 345.4442 10.472961 6 335.6808 355.2075 334.158 356.231 

11 375.4112 12.175071 6 365.6478 385.1745 363.255 389.456 

12 399.2232 10.015863 6 389.4598 408.9865 389.540 410.298 

2  201.1103 10.865020 6 191.3470 210.8737 190.457 212.354 

3  219.2308 20.182929 6 209.4675 228.9942 200.689 245.126 

4  229.2148 12.810761 6 219.4515 238.9782 212.321 245.690 

5  265.1033 11.199877 6 255.3400 274.8667 254.215 276.235 

6  275.6783 11.333499 6 265.9150 285.4417 264.389 286.976 

7  297.2572  9.704150 6 287.4938 307.0205 287.320 307.124 

8  309.2650 11.028341 6 299.5017 319.0283 298.147 320.986 

9  319.8727  6.861633 6 310.1093 329.6360 309.200 326.210 

 

Alpha: 0.05 ; DF Error: 58 

Critical Value of t: 2.001717  

 

least Significant Difference: 13.80743  

 

Treatments with the same letter are not significantly different. 

 

          y groups 

12 399.2232      a 

11 375.4112      b 

10 345.4442      c 
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9  319.8727      d 

8  309.2650     de 

7  297.2572      e 

6  275.6783      f 

5  265.1033      f 

4  229.2148      g 

3  219.2308      g 

2  201.1103      h 

1  195.1217      h 
 

4. Write the following code in editor and run. 

cv.model(result2) 

Output 

[1] 4.177469 

 

2.3 Steps for analysis from factorial experiments 

The data in Table 1 is from an experiment with a factorial experiment with two factors A and B with 6 

levels of factor A and 2 levels of factor B. Design is completely randomized design. 

 

1. Follow steps 1 to 6 of Section 1. 

2. Write the following codes in editor and run them. 

result3 = lm(y ~ A + B + A:B, data = d1) 

anova(result3) 

 

Output: 

Analysis of Variance Table 

 

Response: y 

          Df Sum Sq Mean Sq  F value    Pr(>F)     

A          5 294285   58857 415.3476 < 2.2e-16 *** 

B          1   3867    3867  27.2864  2.32e-06 *** 

A:B        5    971     194   1.3702    0.2483     

Residuals 60   8502     142                        

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

3. Write the following code in editor and run. 
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LSD.test(result3, "A", console = TRUE) 

Output: 

 

Study: result3 ~ "A" 

 

LSD t Test for y  

 

Mean Square Error:  141.7056  

 

A,  means and individual ( 95 %) CI 

 

         y      std  r      LCL      UCL     Min     Max 

1 198.1160 11.19100 12 191.2422 204.9898 180.633 212.354 

2 224.2228 16.93939 12 217.3490 231.0966 200.689 245.690 

3 270.3908 12.07898 12 263.5170 277.2646 254.215 286.976 

4 303.2611 11.72231 12 296.3873 310.1349 287.320 320.986 

5 332.6584 15.79853 12 325.7846 339.5322 309.200 356.231 

6 387.3172 16.35899 12 380.4434 394.1910 363.255 410.298 

 

Alpha: 0.05 ; DF Error: 60 

Critical Value of t: 2.000298  

 

least Significant Difference: 9.721036  

 

Treatments with the same letter are not significantly different. 

 

         y groups 

6 387.3172      a 

5 332.6584      b 

4 303.2611      c 

3 270.3908      d 

2 224.2228      e 

1 198.1160      f 
 

4. Write the following code in editor and run. 

LSD.test(result3, "B", console = TRUE) 

Output: 

 

Study: result3 ~ "B" 

 

LSD t Test for y  
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Mean Square Error:  141.7056  
 
B,  means and individual ( 95 %) CI 
 
         y      std  r      LCL      UCL     Min     Max 
0 278.6661 62.65267 36 274.6975 282.6347 180.633 389.456 
1 293.3226 68.94533 36 289.3540 297.2912 190.457 410.298 
 
Alpha: 0.05 ; DF Error: 60 
Critical Value of t: 2.000298  
 
least Significant Difference: 5.612443  
 
Treatments with the same letter are not significantly different. 
 
         y groups 
1 293.3226      a 
0 278.6661      b 

 

5. Write the following code in editor and run. 

CLD(emmeans(result3, ~ A*B), Letters = letters) 

Output: 

A B   emmean       SE df lower.CL upper.CL .group     
 1 0 195.1217 4.859794 60 185.4006 204.8427  a         
 1 1 201.1103 4.859794 60 191.3893 210.8314  ab        
 2 0 219.2308 4.859794 60 209.5098 228.9519   bc       
 2 1 229.2148 4.859794 60 219.4938 238.9359    c       
 3 0 265.1033 4.859794 60 255.3823 274.8244     d      
 3 1 275.6783 4.859794 60 265.9573 285.3994     de     
 4 0 297.2572 4.859794 60 287.5361 306.9782      ef    
 4 1 309.2650 4.859794 60 299.5440 318.9860       f    
 5 0 319.8727 4.859794 60 310.1516 329.5937       f    
 5 1 345.4442 4.859794 60 335.7231 355.1652        g   
 6 0 375.4112 4.859794 60 365.6901 385.1322         h  
 6 1 399.2232 4.859794 60 389.5021 408.9442          i 
 
Confidence level used: 0.95  
P value adjustment: tukey method for comparing a family of 12 estimates  
significance level used: alpha = 0.05  

 

6. Write the following code in editor and run. 

cv.model(result3) 

Output: 

[1] 4.162325 
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Big Data Analytics for Bioinformatics 

 

In this post genomic era after invention of Next Generation Sequencing (NGS), millions of 

sequences and sequence tags information are being generated everyday by researcher across 

globe. The groundbreaking discovery of NGS has given scientists the means to decipher and 

analyze billions of DNA sequences to determine what specific genes do, and gain the insight 

into how the body works to develop new therapeutics.  

One significant obstacle is NGS analysis produces massive volumes of data; up to a terabyte 

for a single DNA sample. The conventional approach to assemble raw data sequences, create 

DNA annotations and root out false negatives and errors in variant call data is a tedious 

processes that greatly slow the analysis. Since the size of the data is in petabytes consisting of 

billions of records of millions of genes, proteins, human-genome: all from different sources 

(e.g. Database, wet laboratory, dry laboratory, web, scientific researches, and so on); while 

dealing with such a huge datasets, researchers face lots of difficulties in being able to access, 

create, manipulate, store, manage and analyze such a huge data. Further the major difficulty 

faced by such a voluminous data is particularly in business analytics because of lack of 

standard tools and procedures. Big Data Analytics is the process of typically applying the 

tools of artificial intelligence, like machine learning, to a heap of data beyond that which can 

be captured in standard databases. 

The inter-correlation, association mining, network creation, functional annotation and 

extraction of meaningful information (KDD) need an efficient use of these big-data by 

existing tools and algorithm poses and challenging area of research. Data aggregation is one 

time computational intensive work which offers a smooth searching and analyzing arena 

through series of unsupervised and supervised algorithms. 

1. Size of Data: 

The size of data often can be considered as ‘Big Data’, depending on its processing, 

prospective and goal/objective of data mining. Though it is still widely considered with fuzzy 

understanding as 1TB or more. Big Data, while impossible to define specifically, may be 

defined as junk of data which need to be process on utility nodes which typically generate 

with a speed more than its inferring engine.  

Hence it can be safely assumed to have three main characteristics: Velocity (speed of data in 

and out), Variety (range of data types and sources), and Volume (amount of data). 

Velocity describes the frequency at which data is generated, captured and shared. Variety of 

big data means much more than rows and columns, it means unstructured data that can have 

important impacts on company decisions, if it’s analyzed properly in time. Volume describes 
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the amount of data generated by organizations or individuals. Big Data is usually associated 

with this characteristic.  

Next generation Sequencing Data with large size of the FASTQ files creates the problem for 

effective analysis with conventional computational tools and hardware. For example, 

compressed FASTQ files from a typical human whole genome sequencing can still require 

800 Gb. A small project with 10 whole genome sequencing (WGS) samples can generate 

more than ~8 TB of raw data. The disk space required for downstream analysis will add up 

the secondary memory further.  

2. Diversity in Data Set 

The holy grail of any data analytics is the data itself; the data which can represent the overall 

scenario without repeating representations for an individual 'local solution space' is the best 

way to go through.  So the variation is required in sampling with least replication (which is 

practically different from preassembled repeat NGS tags). In most cases when a sequence file 

is processed for a specific patterns; it may present in repeating fashion through many similar 

instances if not same. Overrepresentation often produce biased training and hence wrong 

prediction, which cannot be safely nullified by Cross-Validation methods. Hence the dataset 

sampling itself is very crucial for all pattern recognition task which relies heavily on diversity 

management in dataset. 

3. Clustering 

Clustering is the task of aggregating a set of data in such a way that individual data in the 

same group (called a cluster) are more similar (in some sense or another) to each other than to 

those in other groups (clusters). The aggregated data and its cluster depends on various 

factors like, distance function, type of clustering, data representation, cardinal mapping of 

attribute values etc. However we are more interested to look into those algorithms which are 

specific for our task of NGS data analysis; which can be summarized as Hierarchical 

Clustering, K-Mean and C-Fuzzy Means clustering. One centroid data can safely represent 

the aggregate of data in one cluster if feed with a proper distance function and clustering 

kernel. 

4. Pattern Recognition & Classification 

Pattern recognition focuses on the recognition of patterns and regularities or conserved motifs 

in data, which may carry the intrinsic characteristic of the data. Sequence data carries patterns 

as isolated islands or in association with multiple supporting motifs. Few popular algorithms 

in this area are  

 Decision trees 
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 K-nearest-neighbor algorithms 

 Naive Bayes classifier 

 Neural networks  

 Support vector machines etc. 

Classification of Big Data 

With limitation of processing and storage traditional analytics tools are not well suited to 

capturing the full meaning of big data. The volume of data is often too large for 

comprehensive analysis, and the requirement of establishing correlations and relationships 

between disparate data sources require intensive processing. Machine learning is ideal for 

exploiting the opportunities hidden in big data. The data analyst need to test all hypotheses 

and derive all the values buried within the data. Basic analytical methods used in business 

intelligence and enterprise reporting tools works on structured data through running SQL 

queries. However through systematized extension of these basic analytics on can achive 

similar results on big data through set of commodity hardware clustered in a scalable 

distributed environment.  

Tools and Open Sources 

a) Scikit-learn:  

Scikit-learn leverages this breadth by building on top of several existing Python packages -- 

NumPy, SciPy, and matplotlib - for math and science work. The resulting libraries can be 

used either for interactive “workbench” applications or be embedded into other software and 

reused. The kit is available under a BSD license, so it’s fully open and reusable. 

GitHub: https://github.com/scikit-learn/scikit-learn 

b) Shogun 

Shogun was created and written in C++, but isn’t limited to working in C++. The SWIG 

library, facilitate the Shogun to be used transparently with languages and environments as 

Java, Python, C#, Ruby, R, Lua, Octave, and Matlab.  

GitHub: https://github.com/shogun-toolbox/shogun 

c) Accord Framework/AForge.net 

Accord, a machine learning and signal processing framework for .Net, includes libraries that 

provide a more conventional gamut of machine learning functions, from neural networks to 

decision-tree systems. Works preferably for signal processing and image analysis. 

http://www.swig.org/
http://www.swig.org/
https://github.com/shogun-toolbox/shogun
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GitHub: https://github.com/accord-net/framework/ 

d) Mahout 

The Mahout framework has long been tied to Hadoop, but many of the algorithms under its 

umbrella can also run as-is outside Hadoop. They're useful for stand-alone applications that 

runs on Hadoop or stand-alone applications. One downside of Mahout is its usage of the 

legacy (obsolete) MapReduce framework instead of Spark.  

e) MLlib 

Apache’s own machine learning library for Spark and Hadoop, MLlib boasts a gamut 

of common algorithms and useful data types, designed to run at speed and scale. As you’d 

expect with any Hadoop project, Java is the primary language for working in MLlib, but 

Python users can connect MLlib with the NumPy library (also used in scikit-learn), and Scala 

users can write code against MLlib. MLlib can be deployed on top of Spark without Hadoop 

and in EC2 or on Mesos. Another project, MLbase, builds on top of MLlib to make it easier 

to derive results. Rather than write code, users make queries by way of a declarative 

language. 

f) H2O 

Oxdata’s H2O's algorithms are geared for interacting in a stand-alone fashion with HDFS 

stores, on top of YARN, in MapReduce, or directly in an Amazon EC2 instance. Hadoop 

mavens can use Java to interact with H2O, but the framework also provides bindings for 

Python, R, and Scala, providing cross-interaction with all the libraries available on those 

platforms as well. 

GitHub: https://github.com/0xdata/h2o 

g) Cloudera Oryx 

Yet another machine learning project designed for Hadoop, Oryx comes courtesy of the 

creators of the Cloudera Hadoop distribution. The name on the label isn’t the only detail that 

sets Oryx apart: Per Cloudera’s emphasis on analyzing live streaming data by way of the 

Spark project, Oryx is designed to allow machine learning models to be deployed on real-

time streamed data, enabling projects like real-time spam filters or recommendation engines 

GitHub: https://github.com/cloudera/oryx 

h) GoLearn 

Google’s Go language has been in the wild for only five years, but has started to enjoy wider 

use, due to a growing collection of libraries. The simplicity comes from the way data is 

https://github.com/accord-net/framework/
https://spark.apache.org/docs/latest/mllib-guide.html
http://www.mlbase.org/
http://radar.oreilly.com/2013/02/mlbase-scalable-machine-learning-made-accessible.html
https://github.com/0xdata/h2o
http://www.infoworld.com/article/2607749/hadoop/how-cloudera-plans-to-stand-out-from-the-hadoop-herd.html
http://www.infoworld.com/article/2609791/hadoop/cloudera-launches-in-memory-analyzer-for-hadoop.html
https://github.com/cloudera/oryx
http://www.infoworld.com/article/2843821/google-go/10-open-source-projects-google-go.html
http://www.infoworld.com/article/2843821/google-go/10-open-source-projects-google-go.html
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loaded and handled in the library, since it’s patterned after SciPy and R. The customizability 

lies in both the library’s open source nature (it’s MIT-licensed) and in how some of the data 

structures can be easily extended in an application.One of the libraries found in the Shogun 

toolbox. 

GitHub: https://github.com/sjwhitworth/golearn 

i) Weka 

Weka, a product of the University of Waikato, New Zealand, collects a set of Java machine 

learning algorithms engineered specifically for data mining. This GNU GPLv3-licensed 

collection has a package system to extend its functionality, with both official 

and unofficial packages available. Weka even comes with a book to explain both the software 

and the techniques used, so those looking to get a leg up on both the concepts and the 

software may want to start there. While Weka isn’t aimed specifically at Hadoop users, it can 

be used with Hadoop thanks to a set of wrappers produced for the most recent versions of 

Weka. Note that it doesn’t yet support Spark, only MapReduc. Clojure users can also 

leverage Weka, thanks to the Clj-ml library. 

j) CUDA-Convnet 

By now most everyone knows how GPUs can crunch certain problems faster than CPUs. But 

applications don’t automatically take advantage of GPU acceleration; they have to be 

specifically written to do so. CUDA-Convnet is a machine learning library for neural-

network applications, written in C++ to exploit the Nvidia’s CUDA GPU processing 

technology. For those using Python rather than C++, the resulting neural nets can be saved as 

Python objects and thus accessed from Python. Note that original version of the project is no 

longer being developed, but has since been reworked into a successor, CUDA-Convnet2, 

with support for multiple GPUs and Kepler-generation GPUs. A similar project, Vulpes, has 

been written in F# and works with the .Net framework generally. 

k) ConvNetJS 

As the name implies, ConvNetJS provides neural network machine learning libraries for use 

in JavaScript, facilitating use of the browser as a data workbench. An NPM version is also 

available for those using Node.js, and the library is designed to make proper use of 

JavaScript’s asynchronicity -- for example, training operations can be given a callback to 

execute once they complete.  

GitHub: https://github.com/karpathy/convnetjs 

https://github.com/sjwhitworth/golearn
http://weka.wikispaces.com/Unofficial+packages+for+WEKA+3.7
http://www.cs.waikato.ac.nz/ml/weka/book.html
https://github.com/antoniogarrote/clj-ml
https://github.com/fsprojects/Vulpes
https://github.com/karpathy/convnetjs
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R for High Dimensional Data Analysis 

(Practical) 
 

Why R? 

It's free! And runs on various platforms including Windows, Unix and Mac OSX.  

It provides an unparalleled platform for developing and sharing statistical methods across 

the community.  

R contains many advanced statistical routines not yet available in other packages.  

It has state-of-the-art graphics capabilities.  

Bioconductor: state-of-the-art bio-informatic modules 

 

R: Interface 

 
 

R Workflow 

R is not menu-driven. Its primarily command-based. 

R is an interactive language. Enter a command, wait for it to finish, enter the next 

command and so on. 

R is typically not meant for ‘standardized analysis pipelines’. Generally the output of 

each intermediate step should be examined. 

 

Input-1 <- read-Data() 

Output-1 <-  processing-step-1 (Input-1) 

Output-2 <-  processing-step-2 (Output-1) 

…. 

Output-final 

 

The steps can be all run together using an R-script if many repetitions are needed (also to 

reproduce the analysis later). 
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Data Types 

R has a wide variety of data types including 

Scalars (i.e. vectors of length 1) 

Vectors (numerical, character, logical) – 1D arrays 

Matrices – 2D arrays 

Data-frames – Matrix with different data types in different columns 

Lists – An arbitrary collection of objects not necessarily of same length (possibly a 

mixture of vectors, matrices and scalars). 

 

Numbers and Character Strings 

 

 
 

Logical Type 
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Vectors and Factors 

 

 
 
Matrices, Data Frames 
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Data Subsetting 

 
 
Lists 

 

 
 

Functions 

Syntax 

Out1 <- processFun(obj1,  arg2=val2, arg5=val5) 
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Generally functions consists of multiple  input arguments, some with default values. 

Built-in functions and help. 

Most of R-s functionality is derived through functions 

Examples: ,mean(), summary(), table(), plot(), hclust(), heatmap() 

Type ‘?table’ or ‘?heatmap’ to browse the help-files. 

 

Apart from explaining the input and output formats of these functions help-files also 

contain useful examples at the end. 

 

Bioconductor  

 

 
 
 

Object-Oriented Model 

Classes: Classes describe the general structure of any R object. “Matrix”, “List” etc are 

all classes. Classes can be more complex. There are classes to hold, input data output 

from a function. 

All information in a VCF formatted file (“VCF”) 

Raw data of a Gene-expression study (“AffyBatch”). 

Normalized data from a gene-expr study (e.g. “ExpressionSet”) 

Slots: Simpler data objects inside a class 

E.g. ExpressionSet contains slots such as assayData, phenoData and featureData etc. 

 

Methods are functions defined within a class. 

An object can access methods defined by its own class. 

E.g. Calling the ‘pData(obj)’  will return the phenoData matrix of the ExpressionSet 

object obj. 

The biggest advantage of classes over ‘lists’ is that they can ‘extend’ other classes and 

‘inherit’ from them. 

They can inherit methods and also define methods specific to themselves. 

Sometimes a method with the same name can do different things depending on the class 

of object it is called on. 
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Inheritance Example 
 

 
Fewer function/method names to remember. 

 

Bioconductor Analysis Pipelines 

 

Read raw data into R (using a bioconductor package) as an object of a certain class. 

Perform QC & Pre-processing (e.g. normalization) of the raw data to produce an object of 

another class. 

Use appropriate method to convert normalized data to matrix or vector form. 

Perform statistical analysis using CRAN/Bioconductor packages.  

Visualization using R plotting functions. Sometimes convert to tracks for visualization 

through UCSC genome browser. 

 

Bioconductor Help 

Class introspection 

getClass, getSlots, slotNames, extends 

Method introspection 

showMethods("exprs"), 

showMethods(class="ExpressionSet") 

getMethod("exprs", "ExpressionSet") 

 

Each CRAN/BioC package has a manual with documentation of all the functions. 

 

Almost all packages have one or more vignettes demonstrating how to use the package 

functions. 

R repositories. 

CRAN (Comprehensive R Archive Network) 

More than 3500 packages 

Install and ‘load’ a new package as follows: 

install.packages(“rgl”) 

library(“rgl”) 

CRAN Task views (https://cran.r-project.org/web/views/). 

Bioconductor 

More than 1000 packages 
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Install and ‘load’ a new package as follows: 

source("https://bioconductor.org/biocLite.R") 

biocLite("VariantAnnotation") 

library(“VariantAnnotation”) 
BiocViews (bioconductor.org/packages/release/BiocViews.html) 

 

Example: Variant Annotation 

Code to annotate variants: 

library(TxDb.Hsapiens.UCSC.hg19.knownGene)  

txdb.hg19 <- TxDb.Hsapiens.UCSC.hg19.knownGene 

gr.hg19 <- rowRanges(vcf) 

loc.hg19 <- locateVariants(gr.hg19, txdb.hg19, AllVariants()) 

table(loc.hg19$LOCATION) 

## ## spliceSite   intron   fiveUTR  threeUTR  coding    intergenic       promoter  

## ##     326    211920    1249       5083     11523    36207           12343 

 

Similar and more complex examples can be found in Bioconductor workflows 

(bioconductor.org/help/workflows/). 

 

Some Bioconductor Packages 

 
 

References 
https://cran.r-project.org/doc/contrib/Torfs+Brauer-Short-R-Intro.pdf 

https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf 

https://bioconductor.org/help/course-materials/2010/SeattleIntro/IntroToR_Slides.pdf 

https://master.bioconductor.org/help/course-materials/2002/Summer02Course/Labs/basics.pdf 

https://bioconductor.org/help/course-materials/2010/SeattleIntro/Bioconductor-Introduction.pdf 
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https://bioconductor.org/help/course-materials/2010/SeattleIntro/Bioconductor-Introduction.pdf
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R for Biomolecular Sequence Data 

(Practical) 
 

Packages to be installed: 

 
 

How would you generate a random DNA string? 

 

 
 

Finding out the frequency of a nucleotides in a sequence data 

 

 
 

Finding out the reverse complement of a DNA sequence 
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Translate a nucleotide sequence data into protein sequence 

 
 

Extraction of fragment of a sequence with subset operator 

  
 

However, Biostrings provides the “subseq” function, that follows the SEW (Start End Width) 

interface. In other words, a subsequence can be extracted by two out of three possible 

parameters: 

 start 

 end 

 width 

 
 

This function is very versatile. It even allows negative position. What does a negative 

position mean? 
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Let’s create a DNAStringSet object: 

  
 

 

 
 The “reverseComplement”, “alphabetFrequency” and “subseq” functions can be used over 

all the Biostrings. 

 The “length” function will now return the number of sequences and “width” will return the 

length of each sequence. 

  

 
 

Reading FASTA files 

 There is a special function for reading FASTA files and creating a XStringSet: 

read.DNAStringSet (RNA or Proteins can also be read by changing the prefix). 

 The function for writing a FASTA file from an XStringSet is write.XStringSet. 

 

Preprocessed genomes 

 A package that is related to Biostrings is BSgenome. 

 BSgenome provides preprocessed genomes from some model organisms, as 

Biostrings. 
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 In this session we will use the Escherichia coli APEC 01 genome (NC_008563), so 

 
 

Generating Views 

 An object of XStringViews represents a set of subsequences from a subject string that are 

defined by the SEW interface. 

 

 The views are generated by the function Views and can be defined in different ways: 
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The sliding windows 

 

 Bioinformaticians love to use sliding windows for their analysis. Briefly, sliding 

windows are overlapping fragments of a sequence generated by “walking” through it. 

 

 How would you create a set of windows of width = 100, and sliding step = 10, of the 

first 10kb of E. coli’s genome? 

 

 
 

 
 

Biostrings provide useful pattern matching functions: 

 matchPattern: For matching one pattern to one string. 

 vmatchPattern: For matching one pattern to several strings (StringSet). 

 matchPDict: For matching a dictionary of equal length patterns to a string. 

 vmatchPDict: For matching a dictionary of patterns to a collection of strings. 
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matchPattern 

 

 
 

 
 

matchPDict 

 
Similarly, can be done for vmatchPattern and vmatchPDict. 
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Analysis of Molecular Variance 

 

Analysis of Molecular Variance (AMOVA) is a method for studying molecular variation 

within a species. The analysis of molecular variance (AMOVA) was used to study the 

patterns and degree of relatedness revealed by Multidimensional scaling and the Clustering 

dendrogram. Further it is used to summarize the population structure with the marker data 

from different genotypes, while remaining flexible enough to accommodate different types of 

assumptions about the evolution of the genetic system. Electrophoresis, one of the most 

widely used methods for studying the structure of DNA, produces marker data in the form of 

0s and 1s where 1 denotes the presence of a band and zero its absence. The vector of such 0’s 

and 1’s is called DNA haplotype of the individual/variety. Recently, Analysis of Molecular 

Variance (AMOVA) is used to calculate the ‘between groups’ and ‘within groups’ variance. 

This technique treats genetic distances as deviations from a group mean position, and uses the 

squared deviations as variances. The total sums of squares of genetic distances can then be 

partitioned into components that represent the ‘within group’ and the ‘between-group’ sum of 

squares. The resulting test statistic ST is analogous to Wright’s FST, and is the ratio of the 

between-group mean square to the total mean square (Wright, 1951; Cockerham, 1973). ST 

represents the correlation between random genetic accessions within a group relative to 

random accessions from the population at large. This statistic can take values between 0 and 

1; higher values indicate greater partitioning of the population into sub-groups. 

The Analysis of Molecular Variance Procedure 

When a population is divided into isolated subpopulations, there is less heterozygosity than 

there would be if the population was undivided. Founder effects acting on different demes 

generally lead to subpopulations with allele frequencies that are different from the larger 

population. Also, these demes are smaller in size than the larger population; since allele 

frequency in each generation represents a sample of the previous generation's allele 

frequency, there will be greater sampling error in these small groups than there would be in a 

larger undifferentiated population. Hence, genetic drift will push these smaller demes toward 

different allele frequencies and allele fixation more quickly than would take place in a larger 

undifferentiated population. For a given species, when several subpopulations are separated 

geographically, in absence of selection and with random mating, two trends are expected: (i) 

Gene frequencies for the total population remain constant over generations, and (ii) The 

variance of gene frequencies increase over time because of differentiation among 

subpopulations. Wright’s F statistic (Wright, 1965), quantify the differentiation among 

subpopulations and among individuals. However, molecular data reveals not only the 

frequency of molecular markers, but can also tell us something about the amount of 
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mutational differences between different genes. Analysis of Molecular Variance (AMOVA) 

is a method of estimating population differentiation directly from molecular data and testing 

hypotheses about such differentiation. AMOVA may be used to analyze STMS or AFLP 

molecular data. 

AMOVA treats any kind of raw molecular data as a Boolean vector pi, that is, a 1  n matrix 

of 1’s and 0’s, 1 indicating the presence of a ‘i' marker and 0 its absence. A marker could be a 

nucleotide base, a base sequence, a restriction fragment, or a mutational event. Euclidean 

distances between pairs of vectors are then calculated by subtracting the Boolean vector of 

one haplotype from another, according to the formula (pj – pk). If pj and pk are visualized as 

points in n-dimensional space indicated by the intersections of the values in each vector, with 

n being equal to the length of the vector, then the Euclidean distance is simply a scalar that is 

equal to the shortest distance between those two points. The squared Euclidean distances are 

then calculated using the equation )()(2

kjkjjk ppWpp  , where W is a weighting 

matrix; by default, it is an identity matrix and does not change the value of the final product; 

however, W can be a matrix with a number of values depending upon how one weights 

molecular change at different locations on a sequence or phylogenetic tree. 

Partitioning a Distance Matrix into Hierarchical Components 

Consider a haploid genetic system where inter-haplotypic distances are identical to distances 

between individuals. One can arrange a set of N individuals from I populations into a distance 

matrix, D2, partitioned into a series of submatrices corresponding to particular subdivisions as 

below: 
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where the elements of the block-diagonal submatrices 
2

iiD  contain pairwise squared-distances 

( 2

jk ) between individuals of the same (ith) population, and those of the off-diagonal matrix 

blocks 
2

iiD  , contain pairwise squared-distances between individuals, one from the ith and 

other from the i'th population. Individuals may also be grouped at higher levels, according to 

such non-genetic criteria as geography, ecological environment, or language. 

A conventional sum of squares [SS(Total)] may be written, barring a constant (2N), as the sum 

of squared differences between all pairs of N items. In the multidimensional case, using 
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vectors instead of scalars, the conventional sum of squares becomes a sum of squared 

deviations (SSD) from the centroid of a multidimensional space. Thus, 

SSD(Total)   = 
 


N

j

N

k

kjkj ppWpp
N 1 1

)()(
2

1
 

= 
 

N

j

N

k

jk
N 1 1

2

2

1
  

because 2

jj  = 0 for all haplotype hj. This transformation applies equally to the total array of 

individuals in the data set, to those within each population separately (within the diagonal 

blocks, 
2

iiD ), and to those belonging to a particular subdivision (within the diagonal blocks, 

2

11D , 2

12D , 2

21D  and 2

22D ).  

Model for AMOVA 

Where individuals are arranged into populations and populations nested within groups 

defined a priori on nongenetic criteria, a linear model can be defined on the pattern first 

described by Cockerham (1969, 1973) and refined upon by others (Weir and Cockerham 

1984; Long 1986) 

pjig = p + ag + big + cjig              (1) 

where pjig indexes the jth chromosome, here equivalent to the jth individual (j = 1, . . . , Nig) in 

the ith population ( i = 1, . . . Ig) in the gth group (g = 1, . . . G) and p is the unknown 

expectation of pjig averaged over the whole study. The effects are a for group, b for 

populations and c for individuals within populations. The effects will be assumed to be 

additive, random, uncorrelated, and to have the associated variance components 2
a, 2

b and 

2
c respectively. 

Table 1 General design for hierarchical analysis of molecular variance (AMOVA) 

Source of 

variation 

d.f. MSD Expected MSD 

Among regions G-1 MSD/(AG) 222

abc nn  
 

Among populations 

within regions GI
G

g

g 
1

 
MSD/(AP/WG) 22

bc n 
 

Among individuals  

within populations  



G

g

gIN
1

 
MSD(WP) 2

c
 

Total N-1   
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Relying on the standard decomposition, one can write note that for any choice of hierarchical 

partition of the N individuals into strata,  

SSD(Total) = SSD(Among Strata) + SSD(Within Strata), 

placing in traditional analysis of variance framework, designated here as Analysis of 

Molecular variance, AMOVA (Table 1). The total sum of squared deviations, SSD(Total), 

can be partitioned into components for variation within populations, SSD(WP), variation 

among populations within regional groups, SSD(AP/WG), and variation among regional 

groups, SSD(AG). The corresponding sums of squares are 

SSD(WP)= 

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and 
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The mean squared deviations (MSD) are then obtained by dividing such SSD by the 

appropriate degrees of freedom as reported in Table 1. The n coefficients in Table 1 represent 

the average sample sizes of particular hierarchical levels, allowing for unequal sample sizes, 
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The variance components (2’s) of each hierarchical level are extracted by equating the mean 

squares (MSDs) to their expectations. It may also be useful to employ haplotypic correlation 

measures, which are termed as -statistics. The different variance components can be 

expressed in terms of -statistics as 

22 )1(  SCc   

22 )(  CTSTb   

22  CTa   

where 2 = 
2

a  +
2

b +
2

c ; ST  is viewed as the correlation of random haplotypes within 

populations, relative to that of random pairs of haplotypes drawn from the whole species; 

CT as the correlation of random haplotypes within a group of populations, relative to that of 

random pairs of haplotypes drawn from the whole species, and SC  as the correlation of the 

molecular diversity of random haplotypes within populations, relative to that of random pairs 

of haplotypes drawn from the region. One can rewrite the above equations in terms of the  - 

statistics as 
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Testing Significance of the Variance Components and  - Statistics  

For testing variance components, the traditional analysis of molecular variance procedure 

cannot be adopted because the molecular data consist of Euclidean distances derived from 

vectors of 1’s and 0’s, and the data re unlikely to follow a normal distribution. A null 

distribution is therefore computed by resampling of the data or by a permutation procedure. 

Excoffier, et al., (1992) has discussed the methods for testing the significance of the variance 

components obtained from analysis of molecular variance. Under this procedure each 
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individual is allocated to a randomly chosen population, while holding sample sizes constant 

at the realized values so as to obtain null distribution. This amounts to random permutation of 

the rows (and corresponding columns) of the squared distance matrix. The variance-

components are estimated from each of a large number (say 500) of permuted matrices.  

Further, they suggested two other permutation schemes that are useful for testing SC, 2

b  

and CT, 2

c . The first assumes that the regions are real but that the populations within them 

are not, permuting individuals within regional groups without regard to population. The 

second assumes that while the populations are real, the regional groupings are artificial, 

permuting whole populations across groups. In this case, the sizes of the groups (but not 

those of the populations) vary with each permutational run.  

Restriction Site Sampling  

The sampling of nucleotides shows a major source of variability for the estimation of 

molecular diversity (Lynch and Crease 1990). One can ask whether the results depend on a 

particular array of marker sites employed. Excoffier, et al., (1992) examined the influence of 

site sampling on the genetic structure of the populations, using a site resampling plain similar 

to the bootstrap used by Efron (1982). Under the assumption the observed n sites are 

representative of all molecular markers. They obtain the distribution of the variance 

components and associated  - statistics by Monte Carlo simulation, using 500 random 

collection sites. For each collection, the procedure is as follows: (a) Draw a given number of 

sites from the observed array of m sites, at random and with replacement. Given the choice of 

sites, the haplotype of each individual is then taken as the combination of the original states 

of those randomly chosen sites; (b) compute interhaplotypic distances on the basis of the 

newly defined haplotypes and perform an AMOVA analysis. The distances are simply 

computed from euclidean distance; and (c) permute the matrix 500 times, and test the 

significance of the different statistics with the previously described procedures. 
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Genome Assembly 

 

Introduction 

Genome assembly refers to aligning and merging fragments of genomic DNA sequence in 

order to construct the original sequence. This is mandatory as DNA sequencing technology 

cannot read whole genomes in one go, but rather reads small pieces, in random order, of 

between 20 and 1000 bases, depending on the technology used. Recent advances in 

sequencing technology made it possible to generate vast amounts of sequence data. The 

fragments produced by these high-throughput methods are, however, far shorter than in 

traditional Sanger sequencing. 

The first sequence assemblers began to appear in the late 1980s and early 1990s as variants of 

simpler sequence alignment programs to piece together vast quantities of fragments generated 

by automated sequencing instruments called DNA sequencers. Algorithms were developed 

for whole genome shotgun (WGS) fragment assembly, including Atlas, Arachne, Celera, 

PCAP, Phrap (www.phrap.org) and Phusion. All these programs rely on the overlap-layout-

consensus approach where all the reads are compared to each other in a pair-wise fashion. 

 

 

Figure 1: Scaffolds 

 

The resulting (draft) genome sequence is produced by combining the information 

sequenced “contigs” and then employing linking information to create “scaffolds” (Figure 

1.). Scaffolds are positioned along the physical map of the chromosomes creating a "golden 

path". 

Recently, new sequencing methods have emerged. Commercially available technologies 

include pyrosequencing (454 Sequencing), sequencing by synthesis (Illumina) and 

1. Overlap: find potentially overlapping reads. 

2.  Layout: merge reads into contigs and contigs 

into super-contigs. 

3. Consensus: derive the DNA sequence and 

correct read errors. 

http://en.wikipedia.org/wiki/Contig
http://en.wikipedia.org/wiki/Gene_mapping#Physical_Mapping


High Dimensional Genome data Analysis by R and Open Source Tools CAAST-2019 

 

 

Page | 116 

sequencing by ligation (SOLiD). The reads produced by these next-generation sequencing 

technologies are much shorter than traditional Sanger reads. Because of their shorter length, 

they must be produced in large quantities and at greater coverage depths than the earlier 

sequencing techniques. Whereas long reads provide long overlaps, to disambiguate repeats 

from real overlaps, short reads within repeats offer fewer differences to judge from. These 

issues have led several research teams to design de novo assembly tools specifically for these 

very short reads. 

Types of Sequencers and Data Format  

Illumina    :        FASTQ  

SoLID/ABI-Life: FASTA   

Roche 454    :        SFF  

Ion Torrent    :        SFF or FASTQ 

Types of Assembly 

There are two type of assembly base on the availability of reference genome: 

a) De novo Assembly: Reads are aligned to each other to form a consensus sequences that 

are called contigs. 

 b) Reference genome assembly: Here reads are aligned with the available reference 

genome to form a consensus sequences. 

Genome Assembly Techniques 

Almost all large-scale sequencing projects employ the shotgun strategy that assembler 

(deduce) the target DNA sequence from a set of short DNA fragments determined from DNA 

pieces randomly sampled from the target sequence. The set of short DNA fragments, called 

shotgun reads, are assembled into a set of contigs, or set of aligned fragments, using a 

computer program, fragment assembler. The fragment assembly is a conceptually simple 

procedure that generates longer sequences by detecting overlapping fragments. If the 

fragment assembly can be done perfectly, the genome sequencing would be a simple 

problem. However, there are extensive repetitive sequences, repeats in short, in a genomic 

sequence, which can easily mislead the fragment assembly process. A useful technique to 

overcome the difficulty from repeats is to sequence both ends of a clone, generating two 

fragment reads per clone. Since the insert size of clone is known, we know the approximate 

distance between two fragments. The fragment matching information is often referred as 

mate-pair information, which becomes essential for large-scale shotgun sequencing. The 

main issue utilizing this information during the assembly process is that we do not know the 

sequence between two reads, which can only be deduced by assembling other fragments into 
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single contigs. So we can utilize the clone-length information only after assembly, which 

result either a correct or an incorrect assembly based on the clone-length information. One 

strategy to use the mate-pair information effectively is to assemble contigs as accurate as 

possible by detecting potentially misassembled contigs and then utilize the mate-pair 

information using only contigs that are likely to be assembled correctly.    General procedure 

for genome sequencing and assembly emphasizing the procedures that used at genome-

sequencing centres-  

1. Fragment readout: The sequences of each fragment are determined using automatic 

base-calling software. Phred is the most widely used program. 

2. Trimming vector sequences: Shotgun reads often contain part of the vector 

sequences that have to be removed before sequence assembly. 

3. Trimming low-quality sequences: Shotgun reads contain poor quality base calls and 

removing or masking out these low-quality base calls often leads to more accurate 

sequence assembly. However, this step is optional and some sequencing centres do 

not mask out low-quality base calls, relying on the fragment assembler to utilize 

quality values to decide true fragment overlaps. 

4. Fragment assembly: The shotgun data is input to a fragment assembler that 

automatically generates a set of aligned fragment called contigs.  

5. Assembly validation: Some contigs that assembled in the previous steps may be 

misassembled due to repeats. Since we do not have a priori knowledge on repeats in 

the targets DNA, it is very difficult to verify the correctness of assembly of each 

contig and this step is largely done manually. There are recent algorithmic 

developments on automatic verification of contig assemblies. 

6. Scaffolding Contigs: Contigs needs to be oriented and ordered. The mate-pair 

information is a primary information source for this step, thus this step is not 

achievable if the input shotgun is not prepared by reading both ends of clones. 

7. Finishing: Assuming that all contigs are assembled correctly and contigs are oriented 

and ordered correctly, we can close gaps between two contigs by sequencing specific 

regions that corresponds to the position of gaps. 

De novo assembly of next-generation sequencing reads 

After NGS reads have been generated, they are aligned to a known reference sequence or 

assembled de novo. De novo assembly is the process of reconstructing the genome of 

organisms not sequenced before or for which a reference comparative genome is unavailable. 

It is accomplished through the shotgun process where the genome of the organism is sheared 

into small fragments, each of which is sequenced separately and reconstructed using 

computational tools. This process is complex because genomes contain segments of identical 

sequences namely repeats. The length of the repeats varies very much and makes it 

impossible to recover the complete genome. Therefore, almost all de novo tools do not 

recover the complete genome. However, they report long segments of genome known as 

contigs. Furthermore, the complexity increases with the size of the genome. There are 
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primarily two categories in de novo genome assembling process namely Overlap Layout and 

Consensus (OLC) and De Bruijn graph based methods. OLC based methods are 

computationally more expensive than De Bruijn graph based methods, whereas the latter are 

memory intensive. There are several tools available based on De Bruijn graph.  

Assembly for Double-Ended Short-read Sequencing Technologies 

Recently developed Pyrosequencing-like technologies are extremely promising. However, the 

length of the resulting reads is drastically shorter than those produced by current sequencing 

machines. Sequence repeats limit the usefulness of reads, as any sequence repetition 

exceeding the read-length defines an irresolvable ambiguity. In particular, the shortest 

common superstring of collection of short reads is likely to be a highly over-compressed 

representation of target. To solve the problem of repeats, the variable-insert length, double-

ended read protocol were proposed. Fragment multiple-target clones and use gel 

electrophoresis to separate out all fragments of length a ± b%, or (equivalently stated) of 

length d to d+w for given integers d and w.  

De Bruijn Graph 

In 1995, Idury and Waterman introduced the use of a graph to represent an assembly. They 

presented an assembly algorithm for an alternative sequencing technique, sequencing by 

hybridization, where an oligoarray could detect all the k nucleotide words, also known as k-

mers, present in a given genome. Their resolution method consisted in creating a node for 

every detected word, and then connects the nodes corresponding to overlapping k-mers. They 

could then report chains of overlapping k-mers which unambiguously produced contigs, 

because of an absence of branching connections. This sequence graph is called de Bruijn 

graph, whereby the k-mers are represented as arcs and overlapping k-mers join at their tips. It 

contains novel algorithms for graph construction, error removal, mixed length assembly and 

paired-end assembly. Moreover, this program was designed to be robust and easy to run. 

These has some special aspects Firstly, it maps k-mers onto nodes instead of arcs. Secondly, 

it associates reverse complementary sequences to obtain an implicit bi-graph (or bi-directed 

graph), in other words a graph where an edge can independently enter or exit the nodes at 

either of its ends. Each node N represents a series of overlapping k-mers. Adjacent k-mers 

overlap by k − 1 nucleotides. The marginal information contained by a k-mer is its last 

nucleotide. The sequence of those final nucleotides is called the sequence of the node or s(N). 

The sequence of a node is therefore an incomplete representation of the corresponding k-

mers. In other words, two distinct sets of k-mers can be represented by two separate nodes 

having the same sequence. Despite having the same sequence, these two nodes are 

nonetheless kept separate, and the reads are mapped onto them according to the underlying k-

mers. Each node N is attached to a twin node ˜N, which represents the reverse series of 

reverse complement k-mers. This ensures that overlaps between reads from opposite strands 



High Dimensional Genome data Analysis by R and Open Source Tools CAAST-2019 

 

 

Page | 119 

are taken into account. It is important to note that the sequences attached to a node and its 

twin does not need to be reverse complements of each other. The union of a node N and its 

twin is called a block. From now on any change to a node is implicitly applied symmetrically 

to its twin. The blocks can be considered as the nodes of an implicit bi-graph.  Nodes can be 

connected by a directed edge or arc. In that case, the last k-mer of an arc’s origin node 

overlaps with the first of its destination node. Because of the symmetry of the blocks, if an 

arc goes from node A to B, a symmetric arc goes from ˜B to ˜A. Any modification of one arc 

is implicitly applied symmetrically to its paired arc. 

Each node, represented by a single rectangle, represents a series of overlapping k-mers (in 

this case, k = 5) listed directly above or below. The last nucleotide of each k-mer is colored in 

red. The sequence of those final nucleotides, copied in large letters in the rectangle, is the 

sequence of the node. The twin node, directly attached either below or above the node, 

represents the reverse series of reverse complement k-mers. Arcs are represented as arrows 

between nodes. The last k-mer of an arc’s origin overlaps with the first of its destination. 

Each arc has a symmetric arc. The two nodes on the left could be merged into one without 

loss of information, because they form a chain. 

 In the de Bruijn graph, there is a one-to-one mapping of sequences onto paths 

traversing the graph. Extracting the nucleotide sequence from a path is 

straightforward given the initial k-mer of the first node and the sequences of all the 

nodes in the path. Conversely, for every read there exists exactly one path which 

goes sequentially through the nodes corresponding to the sequence’s k-mers. 

 Two overlapping sequences are represented as two paths which overlap. The 

intersection of the paths corresponds to the overlap between the sequences. The two 

paths form a sub graph the topology of which is directly linked to the type of 

alignment between the sequences. If one sequence is a substring of the other, then 

its path is a sub-path of the other’s path. If the sequences align along their tips, then 

their paths will also be connected at their extremities. When adding more sequences, 

all of the above properties remain valid. This means that all sequences which share a 

common substring are constrained to go through the path corresponding to that 

substring. This property will be useful when searching for sets of overlapping reads 

through repeats, as they all follow the same path.  

The first consequence is that a de Bruijn graph can accommodate sequences of very different 

lengths. This is especially useful when attempting mixed-length sequencing or comparative 

genomics. No ad hoc approximation has to be made to mix short reads, long reads, pre-

assembled contigs or even finished genomes. Secondly, because of the one-to-one 

relationship between paths and sequences, overlapping sequences necessarily follow the same 

path. This simplifies the search for consistently overlapping sets of reads.  
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Issues and Problems of Assembling Complex Genomes 

Genome assembly is a very difficult computational problem, made more difficult because 

many genomes contain large numbers of identical sequences, known as repeats. These repeats 

can be thousands of nucleotides long, and some occur in thousands of different locations, 

especially in the large genomes of plants and animals. 

One challenge to sequencing crop genomes is the vast difference in scale between the size of 

the genomes and the lengths of the reads produced by the different sequencing methods. 

While there may be a 10–500× difference in scale between the short reads produced by 

second-generation sequencing and modern Sanger sequencing, this is still dwarfed by the 

difference between Sanger read length and the lengths of complete chromosomes. As the 

sequenced organisms grew in size and complexity the assembly programs used in genome 

projects needed increasingly sophisticated strategies to handle: 

 Terabytes of sequencing data which need processing on computing clusters; 

 Identical and nearly identical sequences (known as repeats) which can, in the worst 

case, increase the time and space complexity of algorithms exponentially; and 

 Errors in the fragments from the sequencing instruments, which can confound 

assembly. 

Table 1: Lists of prevalent de-novo assemblers  

Name Type Technologies Author Late 

Updated 

BySS (large) 

genomes 

Solexa, SOLiD Simpson, J. et al. 2008 / 

2011 

ALLPATHS-LG (large) 

genomes 

Solexa, SOLiD Gnerre, S. et al. 2011 

AMOS genomes Sanger, 454 Salzberg, S. et al. 2002 / 

2008 

Arapan-M Medium 

Genomes 

(e.g. E.coli) 

All Sahli, M. & Shibuya, 

T. 

2011 / 

2012 

Arapan-S Small 

Genomes 

(Viruses and 

Bacteria) 

All Sahli, M. & Shibuya, 

T. 

2011 / 

2012 

Celera WGA 

Assembler / CABOG 

(large) 

genomes 

Sanger, 454, Solexa Myers, G. et al.;  

Miller G. et al. 

2004 / 

2010 

CLC Genomics 

Workbench & CLC 

Assembly Cell 

genomes Sanger, 454, Solexa, 

SOLiD 

CLC bio 2008 / 

2010 / 

2011 

Cortex genomes Solexa, SOLiD Iqbal, Z. et al. 2011 

DNA Baser genomes Sanger, 454 Heracle BioSoft SRL 2013 

DNA Dragon genomes Illumina, SOLiD, 

Complete Genomics, 

SequentiX 2011 

http://en.wikipedia.org/wiki/Computational_biology
http://en.wikipedia.org/wiki/Repeated_sequence_(DNA)
http://en.wikipedia.org/wiki/Plant
http://en.wikipedia.org/wiki/Animal
http://en.wikipedia.org/wiki/Genome_project
http://en.wikipedia.org/wiki/Genome_project
http://en.wikipedia.org/wiki/Terabytes
http://en.wikipedia.org/wiki/Cluster_computing
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454, Sanger 

DNAnexus genomes Illumina, SOLiD, 

Complete Genomics 

DNAnexus 2011 

Edena genomes Illumina D. Hernandez, P. 

François, L. Farinelli, 

M. Osteras, and J. 

Schrenzel. 

2008/ 

2013 

Euler genomes Sanger, 454 (Solexa ) Pevzner, P. et al. 2001 / 

2006 

 

Euler-sr genomes 454, Solexa Chaisson, MJ. et al. 2008 

Forge (large) 

genomes, EST, 

metagenomes 

454, Solexa, SOLID, 

Sanger 

Platt, DM, Evers, D. 2010 
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Genome Annotation 

 

Introduction 

Until the genome revolution, genes were identified by researchers with specific interests in a 

particular protein or cellular process. Once identified, these genes were isolated, typically by 

cloning and sequencing cDNAs, usually followed by targeted sequencing of the longer 

genomics segments that code for the cDNAs. Once an organism’s entire genome sequence 

becomes available, there is strong motivation for finding all the genes encoded by a genome 

at once rather than in a piecemeal approach. Such catalogue is immensely valuable to 

researchers, as they can learn much more from the whole picture than from a much more 

limited set of genes. For example, genes of similar sequence can be identified, evolutionary 

and functional relationships can be elucidated, and a global picture of how many and what 

types of genes are present in a genome can be seen. A significant portion of the effort in 

genome sequencing is devoted to the process of annotation, in which genes, regulatory 

elements, and other features of the sequence are identifies as thoroughly as possible and 

catalogued in a standard format in public databases so that researchers can easily use the 

information. Functional genomics research has expanded enormously in the last decade and 

particularly the plant biology research community. Functional annotation of novel DNA 

sequences is probably one of the top requirements in functional genomics as this holds, to a 

great extent, the key to the biological interpretation of experimental results.  

Computational Gene Prediction 

Computational gene prediction is becoming more and more essential for the automatic 

analysis and annotation of large uncharacterized genomic sequences. In the past two decades, 

many algorithms have been evolved to predict protein coding regions of the DNA sequences. 

They all have in common, to varying degree, the ability to differentiate between gene features 

like Exons, Introns, Splicing sites, Regulatory sites etc. Gene prediction methods predicts 

coding region in the query sequences and then annotates the sequences databases. 

Gene Structure and Expression 

The gene structure and the gene expression mechanism in eukaryotes are far more 

complicated than in prokaryotes. In typical eukaryotes, the region of the DNA coding for a 

protein is usually not continuous. This region is composed of alternating stretches of exons 

and introns. During transcription, both exons and introns are transcribed onto the RNA, in 

their linear order. Thereafter, a process called splicing takes place, in which, the intron 

sequences are excised and discarded from the RNA sequence. The remaining RNA segments, 

the ones corresponding to the exons are ligated to form the mature RNA strand. A typical 

multi-exon gene has the following structure. It starts with the promoter region, which is 
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followed by a transcribed but non-coding region called 5' untranslated region (5' UTR). Then 

follows the initial exon which contains the start codon. Following the initial exon, there is an 

alternating series of introns and internal exons, followed by the terminating exon, which 

contains the stop codon. It is followed by another non-coding region called the 3' UTR. 

Ending the eukaryotic gene, there is a polyadenylation (polyA) signal: the nucleotide 

Adenine repeating several times. The exon-intron boundaries (i.e., the splice sites) are 

signalled by specific short (2bp long) sequences. The 5'(3') end of an intron (exon) is called 

the donor site, and the 3'(5') end of an intron (exon) is called the acceptor site. The problem 

of gene identification is complicated in the case of eukaryotes by the vast variation that is 

found in gene structure.  

Gene Prediction Methods 

There are mainly two classes of methods for computational gene prediction. One is based on 

sequence similarity searches, while the other is gene structure and signal-based searches, 

which is also referred to as Ab initio gene finding. 

Sequence Similarity Searches 

Sequence similarity search is a conceptually simple approach that is based on finding 

similarity in gene sequences between ESTs (expressed sequence tags), proteins, or other 

genomes to the input genome. This approach is based on the assumption that functional 

regions (exons) are more conserved evolutionarily than non-functional regions (intergenic or 

intronic regions). Once there is similarity between a certain genomic region and an EST, 

DNA, or protein, the similarity information can be used to infer gene structure or function of 

that region. EST-based sequence similarity usually has drawbacks in that ESTs only 

correspond to small portions of the gene sequence, which means that it is often difficult to 

predict the complete gene structure of a given region. Local alignment and global alignment 

are two methods based on similarity searches. The most common local alignment tool is the 

BLAST family of programs, which detects sequence similarity to known genes, proteins, or 

ESTs. The biggest limitation to this type of approaches is that only about half of the genes 

being discovered have significant homology to genes in the databases. 

Ab initio Gene Prediction Methods 

The second class of methods for the computational identification of genes is to use gene 

structure as a template to detect genes, which is also called ab initio prediction. Ab initio gene 

predictions rely on two types of sequence information: signal sensors and content sensors. 

Signal sensors refer to short sequence motifs, such as splice sites, branch points, poly 

pyrimidine tracts, start codons and stop codons. Exon detection must rely on the content 

sensors, which refer to the patterns of codon usage that are unique to a species, and allow 
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coding sequences to be distinguished from the surrounding non-coding sequences by 

statistical detection algorithms. 

Many algorithms are applied for modeling gene structure, such as Dynamic Programming, 

linear discriminant analysis, Linguist methods, Hidden Markov Model and Neural Network. 

Based on these models, a great number of ab initio gene prediction programs have been 

developed. 

Gene Discovery in Prokaryotic Genomes 

Discovery of genes in Prokaryote is relatively easy, due to the higher gene density typical of 

prokaryotes and the absence of introns in their protein coding regions. DNA sequences that 

encode proteins are transcribed into mRNA, and the mRNA is usually translated into proteins 

without significant modification. The longest ORFs (open reading frames) running from the 

first available start codon on the mRNA to the next stop codon in the same reading frame 

generally provide a good, but not assured prediction of the protein coding regions. Several 

methods have been devised that use different types of Markov models in order to capture the 

compositional differences among coding regions, “shadow" coding regions (coding on the 

opposite DNA strand), and noncoding DNA. Such methods, including ECOPARSE, the 

widely used GENMARK, and Glimmer program, appear to be able to identify most protein 

coding genes with good performance.    

Gene Discovery in Eukaryotic Genome 

It is a quite different problem from that encountered in prokaryotes. Transcription of protein 

coding regions initiated at specific promoter sequences is followed by removal of noncoding 

sequences (introns) from pre-mRNA by a splicing mechanism, leaving the protein encoding 

exons. Once the introns have been removed and certain other modifications to the mature 

RNA have been made, the resulting mature mRNA can be translated in the 5` to 3` direction, 

usually from the first start codon to the first stop codon. As a result of the presence of intron 

sequences in the genomic DNA sequences of eukaryotes, the ORF corresponding to an 

encoded gene will be interrupted by the presence of introns that usually generate stop codons. 

Gene Prediction Program 

There are two basic problems in gene prediction: prediction of protein coding regions and 

prediction of the functional sites of genes. Gene prediction program can be classified into 

four generations. The first generation of programs was designed to identify approximate 

locations of coding regions in genomic DNA. The most widely known programs were 

probably TestCode and GRAIL. But they could not accurately predict precise exon locations. 

The second generation, such as SORFIND and Xpound, combined splice signal and coding 

region identification to predict potential exons, but did not attempt to assemble predicted 
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exons into complete genes. The next generation of programs attempted the more difficult task 

of predicting complete gene structures. A variety of programs have been developed, including 

GeneID, GeneParser, GenLang, and FGENEH. However, the performance of those programs 

remained rather poor. Moreover, those programs were all based on the assumption that the 

input sequence contains exactly one complete gene, which is not often the case. To solve this 

problem and improve accuracy and applicability further, GENSCAN and AUGUSTUS were 

developed, which could be classified into the fourth generation.  

GeneMark 

GeneMark uses a Markov Chain model to represent the statistics of the coding and noncoding 

frames. The method uses the dicodon statistics to identify coding regions. Consider the 

analysis of a sequence x whose base at the ith position is called xi. The Markov chains used 

are fifth order, and consist of a terms such as P(a/x1x2x3x4x5), which represent the probability 

of the sixth base of the sequence x being given a given that the previous five bases in the 

sequence x where x1x2x3x4x5, resulting in the first dicodon of the sequence being x1x2x3x4x5a. 

These terms must be defined for all possible pentamers with the general sequence b1b2b3b4b5. 

The values of these terms can be obtained of analysis of data, consisting of nucleotide 

sequence in which the coding regions have been actually identified. When there are sufficient 

data, they are given by 

𝑃(
𝑎

𝑏1𝑏2𝑏3𝑏4𝑏5
) =

𝑛𝑏1𝑏2𝑏3𝑏4𝑏5𝑎

∑ 𝑛𝑏1𝑏2𝑏3𝑏4𝑏5𝑎𝑎=𝐴,𝐶,𝐺,𝑇
 

where, 𝑛𝑏1𝑏2𝑏3𝑏4𝑏5𝑎 is the number of times the sequence b1b2b3b4b5a occurs in the training 

data. This is the maximum likelihood estimators of the probability from the training data. 

Glimmer 

The core of Glimmer is Interpolated Markov Model (IMM), which can be described as a 

generalized Markov chain with variable order. After GeneMark introduces the fixed-order 

Markov chains, Glimmer attempts to find a better approach for modeling the genome content. 

The motivational fact is that the bigger the order of the Markov chain, the more non-

randomness can be described. However, as we move to higher order models, the number of 

probabilities that we must estimate from the data increases exponentially. The major 

limitation of the fixed-order Markov chain is that models from higher order require 

exponentially more training data, which are limited and usually not available for new 

sequences. However, there are some oligomers from higher order that occur often enough to 

be extremely useful predictors. For the purpose of using these higher-order statistics, 

whenever sufficient data is available, Glimmer IMMs.  
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Glimmer calculates the probabilities for all Markov chains from 0th order to 8th. If there are 

longer sequences (e.g. 8-mers) occurring frequently, IMM makes use of them even when 

there is insufficient data to train an 8-th order model. Similarly, when the statistics from the 

8-th order model do not provide significant information, Glimmer refers to the lower-order 

models to predict genes.  

Opposed to the supervised GeneMark, Glimmer uses the input sequence for training. The 

ORFs longer than a certain threshold are detected and used for training, because there is high 

probability that they are genes in prokaryotes. Another training option is to use the sequences 

with homology to known genes from other organisms, available in public databases. 

Moreover, the user can decide whether to use long ORFs for training purposes or choose any 

set of genes to train and build the IMM. 

GeneMark.hmm 

GeneMark.hmm is designed to improve GeneMark in finding exact gene starts. Therefore, 

the properties of GeneMark.hmm are complementary to GeneMark. GeneMark.hmm uses 

GeneMark models of coding and non-coding regions and incorporates them into hidden 

Markov model framework. In short terms, Hidden Markov Models (HMM) are used to 

describe the transitions from non-coding to coding regions and vice versa. GeneMark.hmm 

predicts the most likely structure of the genome using the Viterbi algorithm, a dynamic 

programming algorithm for finding the most likely sequence of hidden states. To further 

improve the prediction of translation start position, GeneMark.hmm derives a model of the 

ribosome binding site (6-7 nucleotides preceding the start codon, which are bound by the 

ribosome when initiating protein translation). This model is used for refinement of the results.  

Both GeneMark and GeneMark.hmm detect prokaryotic genes in terms of identifying open 

reading frames that contain real genes. Moreover, they both use pre-computed species-

specific gene models as training data, in order to determine the parameters of the protein-

coding and non-coding regions. 

Orpheus 

The ORPHEUS program uses homology, codon statistics and ribosome binding sites to 

improve the methods presented so far by using information that those programs ignored. One 

of the key differences is that it uses database searches to help determine putative genes, and is 

thus an extrinsic method. This initial set of genes is used to define the coding statistics for the 

organism, in this case working at the level of codon, not dicodons. These statistics are then 

used to define a larger set of candidate ORFs. From this set, those ORFs with an 

unambiguous start codon end are used to define a scoring matrix for the ribosome-binding 

site, which is then used to determine the 5` end of those ORFs where alternative start are 

present.    
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EcoParse  

EcoParse is one of the first HMM model based gene finder, was developed for gene finding 

in E.coli. It focuses on the uses the codon structure of genes. With EcoParse a flora of HMM 

based gene finder, usuing dynamic programming and the viterbi algorithm to parse a 

sequence, emerged.     

Evaluation of Gene Prediction Programs 

In the field of gene prediction accuracy can be measured at three levels 

a. Coding nucleotides (base level) 

b. Exon structure (exon level) 

c. Protein product (protein level) 

At base level gene predictions can be evaluated in terms of true positives (TP) (predicted 

features that are real), true negatives (TN) (non-predicted features that are not real), false 

positives (FP) (predicted features that are not real), and false negatives (FN) (real features 

that were not predicted) Fig. 1. Usually the base assignment is to be in a coding or non coding 

segment, but this analysis can be extended to include non coding parts of genes, or any 

functional parts of the sequences. 

 TN FN TP FP TN FP TP FN TN 

 
Real          

 Predicted          

 

Real          

 
Predicted          

Figure 1: Four Possible Comparisons of Real and Predicted Genes 

 

 
Sensitivity (Sn): The fraction of bases in real genes that are correctly predicted to be in genes 

is the sensitivity and interpreted as the probability of correctly predicting a nucleotide to be in 

a given gene that it actually is. 

  

 

Specificity (Sp): The fraction of those bases which are predicted to be in genes that actually 

are is called the specificity and interpreted as the probability of a nucleotide actually being in 

a gene given that it has been predicted to be. 

  



Sn 
TP

TP FN

  



Sp 
TP

TP FP
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Care has to be taken in using these two values to assess a gene prediction program because, 

as with the normal definition of specificity, extreme results can make them misleading.  

Approximate correlation coefficient (AC) has been proposed as a single measure to 

circumvent these difficulties. This defined as AC=2(ACP-0.5), where  

 

 

At the exon level, determination of prediction accuracy depends on the exact prediction of 

exon start and end points. There are two measures of sensitivity and specificity used in the 

field, each of which measures a different but useful property.  

The sensitivity measures used are 

Sn1 = CE/AE and Sn2 = ME/AE 

The specificity measures used are 

Sp1=CE/PE and Sp2=WE/PE  

Where,  

AE = No of actual exons in the data   

PE = No of predicted exons in the data 

CE = No of correct predicted exons 

ME = No of missing exons (rarely occurs) 

WE = No of wrongly predicted exons (Figure-5) 

 

Figure 2: Real and Predicted Exons 

Gene Ontology 

The gene ontology (GO, http:www.geneontology.org)  is probably the most extensive scheme 

today for the description of gene product functions but other systems such as enzyme codes, 

KEGG pathways, FunCat, or COG are also widely used. Here, we describe the Blast2GO 

(B2G, www.blast2go.org) application for the functional annotation, management, and data 

mining of novel sequence data through the use of common controlled vocabulary schemas. 

    



ACP 
1

n

TP

TP FN


TP

TP FP


TN

TN  FP


TN

TN  FN









,



High Dimensional Genome data Analysis by R and Open Source Tools CAAST-2019 

 

 

Page | 129 

The main application domain of the tool is the functional genomics of nonmodel organisms 

and it is primarily intended to support research in experimental labs. Blast2GO strives to be 

the application of choice for the annotation of novel sequences in functional genomics 

projects where thousands of fragments need to be characterized. Functional annotation in 

Blast2GO is based on homology transfer. Within this framework, the actual annotation 

procedure is configurable and permits the design of different annotation strategies. Blast2GO 

annotation parameters include the choice of search database, the strength and number of blast 

results, the extension of the query-hit match, the quality of the transferred annotations, and 

the inclusion of motif annotation. Vocabularies supported by B2G are gene ontology terms, 

enzyme codes (EC), InterPro IDs, and KEGG pathways. 

Figure 7 shows the basic components of the Blast2GO suite. Functional assignments proceed 

through an elaborate annotation procedure that comprises a central strategy plus refinement 

functions. Next, visualization and data mining engines permit exploiting the annotation 

results to gain functional knowledge. GO annotations are generated through a 3-step process: 

blast, mapping, annotation. InterPro terms are obtained from InterProScan at EBI, converted 

and merged to GOs. GO annotation can be modulated from Annex, GOSlim web services and 

manual editing. EC and KEGG annotations are generated from GO. Visual tools include 

sequence color code, KEGG pathways, and GO graphs with node highlighting and filtering 

options. Additional annotation data-mining tools include statistical charts and gene set 

enrichment analysis functions. 

 

Figure 3: Schematic Representation of Blast2GO Application 
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The Blast2GO annotation procedure consists of three main steps: blast to find homologous 

sequences, mapping to collect GO terms associated to blast hits, and annotation to assign 

trustworthy information to query sequences.  

Blast Step 

The first step in B2G is to find sequences similar to a query set by blast. B2G accepts 

nucleotide and protein sequences in FASTA format and supports the four basic blast 

programs (blastx, blastp, blastn, and tblastx). Homology searches can be launched against 

public databases such as (the) NCBI nr using a query-friendly version of blast (QBlast). This 

is the default option and in this case, no additional installations are needed. Alternatively, 

blast can be run locally against a proprietary FASTA-formatted database, which requires a 

working www-blast installation. The Make Filtered Blast-GO-BD function in the Tools menu 

allows the creation of customized databases containing only GO annotated entries, which can 

be used in combination with the local blast option. Other configurable parameters at the blast 

step are the expectation value (e-value) threshold, the number of retrieved hits, and the 

minimal alignment length (hsp length) which permits the exclusion of hits with short, low e-

value matches from the sources of functional terms. Annotation, however, will ultimately be 

based on sequence similarity levels as similarity percentages are independent of database size 

and more intuitive than e-values. Blast2GO parses blast results and presents the information 

for each sequence in table format. Query sequence descriptions are obtained by applying a 

language processing algorithm to hit descriptions, which extracts informative names and 

avoids low content terms such as “hypothetical protein” or “expressed protein”. 

Mapping Step 

Mapping is the process of retrieving GO terms associated to the hits obtained after a blast 

search. B2G performs three different mappings as follows.  

a. Blast result accessions are used to retrieve gene names (symbols) making use of two 

mapping files provided by NCBI (geneinfo, gene2accession). Identified gene names 

are searched in the species-specific entries of the gene product table of the GO 

database.  

b. Blast result GI identifiers are used to retrieve UniProt IDs making use of a mapping 

file from PIR (Non-redundant Reference Protein database) including PSD, UniProt, 

Swiss-Prot, TrEMBL, RefSeq, GenPept, and PDB.  

c. Blast result accessions are searched directly in the DBXRef Table of the GO database. 

Annotation Step 

This is the process of assigning functional terms to query sequences from the pool of GO 

terms gathered in the mapping step. Function assignment is based on the gene ontology 
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vocabulary. Mapping from GO terms to enzyme codes permits the subsequent recovery of 

enzyme codes and KEGG pathway annotations. The B2G annotation algorithm takes into 

consideration the similarity between query and hit sequences, the quality of the source of GO 

assignments, and the structure of the GO DAG. For each query sequence and each candidate 

GO term, an annotation score (AS) is computed (see Figure 8). The AS is composed of two 

terms. The first, direct term (DT), represents the highest similarity value among the hit 

sequences bearing this GO term, weighted by a factor corresponding to its evidence code 

(EC). A GO term EC is present for every annotation in the GO database to indicate the 

procedure of functional assignment. 

 
Figure 4: Blast2GO Annotation Rule 

ECs vary from experimental evidence, such as inferred by direct assay (IDA) to unsupervised 

assignments such as inferred by electronic annotation (IEA). The second term (AT) of the 

annotation rule introduces the possibility of abstraction into the annotation algorithm. 

Abstraction is defined as the annotation to a parent node when several child nodes are present 

in the GO candidate pool. This term multiplies the number of total GOs unified at the node by 

a user defined factor or GO weight (GOw) that controls the possibility and strength of 

abstraction. When all ECw’s are set to 1 (no EC control) and the GOw is set to 0 (no 

abstraction is possible), the annotation score of a given GO term equals the highest similarity 

value among the blast hits annotated with that term. If the ECw is smaller than one, the DT 

decreases and higher query-hit similarities are required to surpass the annotation threshold. If 

the GOw is not equal to zero, the AT becomes contributing and the annotation of a parent 

node is possible if multiple child nodes coexist that do not reach the annotation cutoff. 

Default values of B2G annotation parameters were chosen to optimize the ratio between 

annotation coverage and annotation accuracy. Finally, the AR selects the lowest terms per 

branch that exceed a user-defined threshold. 

Blast2GO includes different functionalities to complete and modify the annotations obtained 

through the above-defined procedure. Enzyme codes and KEGG pathway annotations are 

generated from the direct mapping of GO terms to their enzyme code equivalents. 

Additionally, Blast2GO offers InterPro searches directly from the B2G interface. B2G 

launches sequence queries in batch, and recovers, parses, and uploads InterPro results. 

Furthermore, InterPro IDs can be mapped to GO terms and merged with blast-derived GO 

annotations to provide one integrated annotation result. In this process, B2G ensures that only 

the lowest term per branch remains in the final annotation set, removing possible parent-child 

relationships originating from the merging action. 
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Genome Assembly and Anotation 

(Practical) 

 

Bioinformatics analysis pipeline 

 

 

 

 

 

1.1 Read quality check - We check the following parameters from fastq file 

 

 Base quality score distribution 

 Sequence quality score distribution 

 Average base content per read 

 GC distribution in the reads 

 PCR amplification issue 

 Check for over-represented sequences 

./Fastqc  reads 

 

Figure 1: Schematic workflow of Transcriptome analysis 
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Trimming & Contamination Removal - Based on quality of sequence reads, we trimmed 

sequence read where necessary, to retain only high quality sequence for further analysis. In 

addition, the low-quality sequence reads were excluded from the analysis from the Trimmed 

paired-end reads, we removed unwanted sequences. Adapter sequences and others. The 

trimming and contamination removal step had been performed using the help of Trimmimatic 

version Trimmomatic-0.35. 

java -jar trimmomatic-0.35.jar PE -phred33 input_forward.fq.gz input_reverse.fq.gz 

reads_1.fq.gz output_forward_unpaired.fq.gz reads_2.fq.gz  

output_reverse_unpaired.fq.gz ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 LEADING:3 

TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36 

 

Read assembly- The pre-processed high quality forward and reverse reads from each files 

were then assembled denovo using Trinity release v2.0.6 and output saved in file Trinity.fasta. 

 

Trinity --seqType fq --max_memory 50G  --left reads_1.fq.gz  --right reads_2.fq.gz --CPU 6 

 

Statistics of Assembled File 

 

       TRINITY_HOME/util/TrinityStats.pl trinity_out_dir/Trinity.fasta. 

  

FPKM Analysis- Unigenes produced in Read assembly steps from Trinity.fasta were used as 

reference against reads from all four samples. RSEM tool was used to calculate the FPKM 

values for each unigene. 

 

TRINITY_HOME/util/align_and_estimate_abundance.pl—seqType fq 

--left left.fq --right right.fq—transcripts Trinity.fasta --output_prefix Sp_ds 

--est_method RSEM --aln_method bowtie --trinity_mode --prep_reference 

$TRINITY_HOME/util/abundance_estimates_to_matrix.pl --est_method RSEM

 --out_prefix Trinity_trans Sp_ds.isoforms.results

 Sp_hs.isoforms.results  

 

 

DGE Analysis- Running Differential Expression Analysis 

 

Edgar: http://bioconductor.org/packages/release/bioc/html/edgeR.html 

http://bioconductor.org/packages/release/bioc/html/edgeR.html
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DESeq2: http://bioconductor.org/packages/release/bioc/html/DESeq2.html 

% R 

 > source("http://bioconductor.org/biocLite.R") 

 > biocLite('edgeR') 

 > biocLite('limma') 

 > biocLite('DESeq2') 

 > biocLite('ctc') 

 > biocLite('Biobase') 

 > install.packages('gplots') 

 > install.packages('ape') 

 

$TRINITY_HOME/Analysis/DifferentialExpression/run_DE_analysis.pl --matrix 

counts.matrix --method edgeR  --dispersion 0.1 

 

FPKM values obtained from samples were combined in tabulated format and analyzed 

using TMeV4 tool to visualized differentially expressed genes, upregulated and down 

regulated genes are filtered on the bais of FC (fold change).  

 

Annotation- blastx against Viridiplantae database 

(https://www.uniprot.org/uniprot/?query=taxonomy:33090 ) and futher uniprot id or 

ensemble ID of hit transcript can be used for online annotation server database. 

 

Ontology Analysis- All the mapped ids were then submitted to AgriGO/DAVID tool for 

Ontology analysis to identify the Biological Process, Cellular Component, and Molecular 

Function in differentially expressed genes. 

 

 

 

 

http://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://www.uniprot.org/uniprot/?query=taxonomy:33090
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Biomolecular Sequence Encoding 

(Practical) 

 

The sequence data cannot be directly used as input in the Machine Learning Models for 

classification and prediction purposes. Hence, the encoding schemes are used to generate the 

numeric feature vector forms of sequences. Various encoding approaches used in this study are 

described below:  

Amino acid Composition (AC) 

The AC is the easiest and popularly used encoding method for representing the protein/peptide 

sequences. It is the fraction of each type of amino acid present in a peptide or protein sequence.  

Di-peptide Composition (DC)  

As there are 20 amino acids there can be 400 (202) possible di-peptide combinations. DC 

considers the amino acid ordering effect within a small range. Here, the fraction of each types 

of di-peptide to the total number of di-peptides in the sequence is calculated.  

Tri-peptide Composition (TC)  

The TC generates 8000 (203) descriptors and here the fraction of a tri-peptide in the sequence. 

Though this feature has been reported to give considerable accuracy but its computation and 

training is time consuming. 

Amino acid anchoring Pair Composition (APC) 

The APC features are generated by finding out the proportions of amino acid pairs separated 

by g residues where g= 0,1, 2 ...Li-2  and Li is the length of the sequence.  It results a numeric 

feature vector of length 400*(g+1).  

Composition-Transition-Distribution (CTD) features 

CTD features describes amino acids generally based on properties like, hydrophobicity, 

polarity, polarizability and under each property there are 3 groups into which 20 amino acids  

are classified. The CTD features are: 

i. Composition(C) of amino acids of a particular property (such as hydrophobicity) 

divided by the sequence length. 

ii. Transition (T) that exemplify the percent frequency with which a class of amino acids 

with a specific property is followed by another class of amino acids having a different 

property.   
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iii. Distribution(D) determines the sequence length where the first, 25, 50, 75 and 100 

percent of residues of certain characteristics are located.  

Auto-Correlation Features (AF) 

Auto-correlation considers the dependencies among the sequence features calculated based on 

the distribution of amino acid properties on a bio-molecular sequence. The properties of amino 

acids used to extract the AF are based on several types of amino acid indices available in 

AAindex Database (http:://www.genome.jp/dbget/aaindex.html). The following three types of 

autocorrelation descriptors will be used to encode the sequences.  

i. Normalized Moreau-Broto Autocorrelation Descriptors (MB) 

ii. Moran Autocorrelation Descriptors (MA) 

iii. Geary Autocorrelation Descriptors (GA) 

Conjoint triad descriptors (CT) 

The CT descriptors (Shen et al., 2007) consider the properties of an amino acid residue along 

with the residues preceding and succeeding it.  As it considers three consecutive amino acids 

as a single unit, it is called as conjoint triad. The encoding scheme involves the clustering of 

20 amino acid residues into seven classes based on their dipoles and side chain volumes. Hence, 

it generates a numeric feature vector of length 73 (343). It treats the triads equally those belong 

to the same class.  

BLOSUM 62 descriptor (BL62) 

The BL62 descriptors are derived from the BLOSUM substitution matrix for sequence 

similarity. These descriptors suggest the evolutionary significance of the epitope sequences. 

R codes for encoding 

setwd("—YOUR WORKING DIRECTORY--") 

library(Biostrings) 

library(protr) 

library(BioSeqClass) 

calculate<- function(kk, len, V1) 

{ 

#Amino acid Composition 

za <- matrix(nrow=len, ncol=20) 

for(i in 1:len){ 

m <- as.character(kk[i]) 

km <- extractAAC(m) 

za[i,]<- as.matrix(km, nrow=1, ncol=20) 
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} 

za<-data.frame(cbind(V1,za)) 

#Dipeptide 

zd <- matrix(nrow=len, ncol=400) 

for(i in 1:len){ 

m <- as.character(kk[i]) 

km <- extractDC(m) 

zd[i,]<- as.matrix(km, nrow=1, ncol=400) 

} 

zd<-data.frame(cbind(V1,zd)) 

#Tripeptide 

ztc <- matrix(nrow=len, ncol=8000) 

for(i in 1:len){ 

m <- as.character(kk[i]) 

km <- extractTC(m) 

ztc[i,]<- as.matrix(km, nrow=1, ncol=8000) 

} 

ztc<-data.frame(cbind(V1,ztc)) 

##Amino acid anchoring Pair Composition (APC) 

zgpc <- matrix(nrow=len, ncol=1200) 

for(i in 1:len){ 

m <- as.character(kk[i]) 

km <- featureCKSAAP(m, 2)/rep(c(nchar(m), nchar(m)-1, nchar(m)-2), each=400) 

zgpc[i,]<- as.matrix(km, nrow=1, ncol=1200) 

} 

zgpc<-data.frame(cbind(V1,zgpc)) 

#Autocorelation Moreaubroto 

mb <- matrix(nrow=len, ncol=120) 

for(i in 1:len){ 

m <- as.character(kk[i]) 

km <- extractMoreauBroto(m, nlag = 15L) 

mb[i,]<- as.matrix(km, nrow=1, ncol=120) 

} 

mb<-data.frame(cbind(V1,mb)) 

#Autocorelation Moran 

mr <- matrix(nrow=len, ncol=120) 

for(i in 1:len){ 

m <- as.character(kk[i]) 

km <- extractMoran(m, nlag = 15L) 

mr[i,]<- as.matrix(km, nrow=1, ncol=120) 
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} 

mr<-data.frame(cbind(V1,mr)) 

#Autocorelation Geary 

gr <- matrix(nrow=len, ncol=120) 

for(i in 1:len){ 

m <- as.character(kk[i]) 

km <- extractGeary(m, nlag = 15L) 

gr[i,]<- as.matrix(km, nrow=1,ncol=120) 

} 

gr<-data.frame(cbind(V1,gr)) 

#CTDC 

ctdc <- matrix(nrow=len, ncol=21) 

for(i in 1:len){ 

m <- as.character(kk[i]) 

km <- extractCTDC(m) 

ctdc[i,]<- as.matrix(km, nrow=1, ncol=21) 

} 

ctdc<-data.frame(cbind(V1,ctdc)) 

#CTDT 

ctdt <- matrix(nrow=len, ncol=21) 

for(i in 1:len){ 

m <- as.character(kk[i]) 

km <- extractCTDT(m) 

ctdt[i,]<- as.matrix(km, nrow=1, ncol=21) 

} 

ctdt<-data.frame(cbind(V1,ctdt)) 

#CTDD 

ctdd <- matrix(nrow=len, ncol=105) 

for(i in 1:len){ 

m <- as.character(kk[i]) 

km <- extractCTDD(m) 

ctdd[i,]<- as.matrix(km, nrow=1, ncol=105) 

} 

ctdd<-data.frame(cbind(V1,ctdd)) 

#CTriad 

ctr <- matrix(nrow=len, ncol=343) 

for(i in 1:len){ 

m <- as.character(kk[i]) 

km <- extractCTriad(m) 

ctr[i,]<- as.matrix(km, nrow=1, ncol=343) 
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} 

ctr<-data.frame(cbind(V1,ctr)) 

#Blosum62 

blosum62 <- matrix(nrow=len, ncol=175) 

for(i in 1:len){ 

m <- as.character(kk[i]) 

km<- extractBLOSUM(m, submat = "AABLOSUM62", k = 5, lag = 7, scale = TRUE, silent = 

FALSE) 

blosum62[i,]<- as.matrix(km, nrow=1, ncol=175) 

} 

blosum62<-data.frame(cbind(V1,blosum62)) 

write.table(za, "aminoacid_comp.txt", sep="\t", row.names=F, col.names=F, quote=F, 

append=T) 

write.table(zd, "dipeptide_comp.txt", sep="\t", row.names=F, col.names=F, quote=F, 

append=T) 

write.table(ztc, "trip_comp.txt", sep="\t", row.names=F, col.names=F, quote=F, append=T) 

write.table(zgpc, "anchor_pair.txt", sep="\t", row.names=F, col.names=F, quote=F, 

append=T) 

write.table(mb, "auto_corr_moreaubroto.txt", sep="\t", row.names=F, col.names=F, quote=F, 

append=T) 

#write.table(mr, "auto_corr_moran.txt", sep="\t", row.names=F, col.names=F, quote=F, 

append=T) 

write.table(ctdc, "ctdc.txt", sep="\t", row.names=F, col.names=F, quote=F, append=T) 

write.table(ctdt, "ctdt.txt", sep="\t", row.names=F, col.names=F, quote=F, append=T) 

write.table(ctdd, "ctdd.txt", sep="\t", row.names=F, col.names=F, quote=F, append=T) 

write.table(ctr, "ctriad.txt", sep="\t", row.names=F, col.names=F, quote=F, append=T) 

write.table(blosum62, "blosum62.txt", sep="\t", row.names=F, col.names=F, quote=F, 

append=T) 

} 

kkp <- readAAStringSet("__YOUR FILE NAME IN FASTA FORMAT___") 

lenp <- length(kkp) 

calculate(kkp, lenp, "Y") 
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Genome Editing to Epigenome Editing: A Newer Perspective in 

Crop Improvement 

 

Introduction 

The global human population is estimated to exceed 9 billion by 2050, which would require a 

predicted 70% increase in food production (Kumar, 2013). Moreover, one of the important 

challenges would be to produce the nutritive food from the continuously reducing per capita 

arable land and water. Another important challenge would be to produce this in a safe and 

sustainable manner (Kumar and Singh, 2014; Kumar, 2015a). The conventional approaches 

might not be adequate to meet the projected food requirements, both in terms of quantity and 

quality. Since most of the cultivated varieties have reached their yielding plateau, the need of 

the day is to deploy modern tools and techniques to further enhance the productivity of crop 

plants with the decreasing availability of natural resources. Importantly, the biosafety issues of 

genetically modified organisms (GMOs), particularly those associated with the genetic 

manipulation technology being used (Kumar et al., 20006; Kumar, 2014), have become a 

serious concern. Therefore, appropriate safety guidelines framed/being framed by the 

regulatory agencies of the country must be followed for environmental safety (Kumar, 2012; 

Kumar, 2015b). Fortunately, epigenome editing promises to provide unprecedented 

opportunities not only for the manipulation of biological systems for a better understanding of 

the regulatory mechanisms but also for efficient manipulation of the genome to improve stress 

tolerance against the climatic changes. This would enable functional integration of epigenetic 

marks and their usage towards improving the agriculturally important traits in the crop plants 

(Springer and Schmitz, 2017). 

Plant scientists aim at developing newer crop varieties with wider adaptation to the changing 

climatic conditions. Researchers have been interested in deciphering the underlying 

mechanisms that enable plants to better adapt to diverse environmental conditions. Increasing 

knowledge of the plant’s genome structure and functional characterizations have paved the way 

not only for the selection of parental/recombinant lines for crossing but also for targeted 

genome and epigenome editing leading towards the so-called next-generation biotechnology 

for their application in breeding for crop improvement. Technological advancements in the 

manipulation of DNA/gene have enabled us to better understand and utilize the genome. 

However, site-specific manipulation in the genome of an organism has been elusive for quite a 

long time. Identification, isolation and stable integration of a gene of interest in the plant of our 

choice has been successful to a great extent, but consistency in the performance of the 

transgenic plants and the related biosafety issues have been significant points of concerns. 

Moreover, there have been several technical issues associated with the tools and techniques 
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used for the development of GMOs, such as the copy number of the transgene, site of 

integration of transgene, presence of selectable marker gene(s) in the transgenic plant, 

expression level/stability of the transgene, etc. To overcome many of these challenges, 

scientists have been working day and night to bring innovations in genetic manipulation 

technologies.   

Genome editing: a continuously improving technology 

Targeted gene editing has emerged as an alternative to the standard genetic manipulation 

methods for crop improvement. This has been possible due to the advances in engineering the 

nucleases with programmable, site-specific DNA-binding domains like zinc finger nucleases 

(ZFN), transcription activator-like effector nucleases (TALENs) and Clustered regularly 

interspaced short palindromic repeats/CRISPR-associated-9 nuclease (CRISPR/Cas9). Each of 

these gene-editing tools has its own advantages and limitations. However, CRISPR/Cas9, a 

newer method based on the bacterial CRISPR and Cas9 type II prokaryotic adaptive immune 

system, has emerged as a simpler, easier, and more precise/successful tool for genome editing. 

Originally identified in Streptococcus pyogenes, the CRISPR/Cas9-mediated double-strand 

breakage relies upon two interacting RNA moieties: (i) CRISPR RNAs (crRNA), and (ii) trans-

activating RNAs (tracrRNA) for sequence specificity. When it was demonstrated that a single 

chimeric RNA molecule comprising of these two RNAs can serve the function of recruiting 

Cas9 nuclease, its usage in genome editing in a site-specific manner became easier. Any 

sequence (∼20 nucleotides long) in the genome can be a target, provided it meets the two basic 

requirements: (i) the sequence is unique within the genome, and (ii) the target sequence is 

located immediately upstream of a Proto-spacer Adjacent Motif (PAM). The PAM sequence is 

essential for target sequence identification/binding. The Cas9 protein and the guide-RNA 

(gRNA) form a riboprotein complex. Once the gRNA-Cas9 complex is formed, Cas9 

undergoes a conformational change from an inactive (non-DNA binding confirmation) to an 

active (DNA-binding) form. Importantly, the ‘spacer’ sequence of gRNA remains free to 

interact with the target DNA. The Cas9-gRNA complex can bind at any genomic sequence 

having the PAM, but the extent to which the gRNA spacer complements with the target DNA 

determines whether Cas9 will make cut or not. The Cas9 nuclease, having two functional 

endonuclease domains (i) RuvC and (ii) HNH, undergoes another conformational change upon 

binding at the target DNA, which positions the nuclease domain to cleave opposite strands of 

the target DNA causing double-strand break (DSB) at the target (∼ 34 nucleotides upstream 

of the PAM sequence. Subsequently, the resulting DSB is repaired by one of the two repair 

mechanisms: (i) an efficient but error-prone Non-Homologous End Joining (NHEJ) pathway, 

and (ii) a less efficient but high-fidelity Homology Directed Repair (HDR) pathway (Fig. 1).   
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Figure 1. Steps in CRISPR/Cas9-mediated gene editing. 1. The two components (i) CRISPR RNAs 

(crRNA), and (ii) trans-activating RNAs (tracrRNA) of a single-guide RNA (sgRNA). 2. The sgRNA-

Cas9 complex, and the target DNA (gene) containing the PAM sequence. 3. Target-specific cleavage 

of the DNA through binding/recognition of the PAM sequence, and double-strand break (DSB) at the 

target DNA. 4. Repair of the break using an efficient but error-prone non-homologous end joining 

(NHEJ) mechanism. 

 

Recent advances in genome editing technology 

The discovery of a catalytically-dead mutant of Streptococcus pyogenes SpCas9 (dCas9) has 

provided a worthy tool for regulating gene expression (Qi et al., 2013). Moreover, novel 

tagging approaches have enabled more efficient recruitment of multiple effectors through a 

single-dCas9 to a specific genomic locus. The recruitment strategy has also been combined 

with a chemically inducible approach to achieve temporal control of transcriptional regulation. 

These advances focus on the recruitment of synthetic modulators and the reversibility required 

for mechanistic studies. Braun et al. (2017) used FIRE–Cas9 for rapid and reversible 

recruitment of endogenous chromatin complex to a genomic locus in a cell. While the 

previously known strategies recruit exogenous activators/repressors to turn on and off the gene 

expression in the cells cultured for several days, use of induced proximity (synthetic ligands) 

enables to determine the link between epigenetic regulators and histone modifications within 

minutes of recruitment. 

Alternatives to Cas9 nuclease are being searched by the scientist for a more effective and 

precise nuclease targeting different nucleic acids. Cpf1 (a CRISPR endonuclease discovered in 

Prevotella and Francisella 1 bacteria), is such an alternative platform for CRISPR-based 
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genome editing. CRISPR–Cpf1 system enhances genome-editing efficiency and speed. Cpf1 

is also known as Cas12a it is more effective and precise compared to the Cas9. A newly 

discovered nuclease namely Cas14 possesses a single-stranded DNA targeting activity having 

two times smaller size than Cas9. Hence, it can be potentially utilized for detecting ssDNA 

viruses of clinical, ecological, and economic importance. Its non-specific ssDNase cleavage 

activity can also be combined with isothermal amplification method for its use in high-fidelity 

DNA single-nucleotide polymorphism genotyping. Moreover, Cox et al. (2017) reported the 

possibility of editing RNA transcripts to alter their coding potential in a programmable manner. 

The RNA Editing for Programmable A to I Replacement (REPAIR), a transcriptome-editing 

technology (targeting and altering RNA bases) offers an opportunity to even edit the mRNA. 

Cox et al. (2017) used PspCas13b enzyme in their REPAIR technology for both RNA 

knockdown and RNA editing having broad applicability for biotechnology research and 

therapeutics. RNA editing would allow answering some of the questions about alternative 

splicing, and translation. RNA editing would confer temporary, reversible genetic edits, rather 

than the permanent genome edits in case of DNA editing. This might allow avoiding the ethical 

issues that might arise around the genome editing. However, the RNA base editors would have 

to be administered repeatedly to be a functional therapeutic approach. Thus, gene/genome 

editing technology has a very promising future in the areas of research and therapeutics. 

Epigenomics: an immerging area of functional genomics 

Information needed for proper assembly of RNAs and proteins in any living organism is 

encoded in the cellular genome. But, the instructions regarding access to this information in a 

temporal and spatial manner is encrypted in the epigenome, which ultimately grants selective 

access to the information contained in the DNA/gene. Plants are sessile in nature and face 

multiple environmental stresses throughout their life. Although pants possess innate capability 

to tolerate such adverse climatic conditions, yet they require improvement in their efficiency 

to produce more under unfavourable climatic conditions. Until recently it has been thought that 

isolation of a gene associated with a trait would be sufficient enough to transfer the trait to a 

crop plant and to create the expected phenotype. However, evidence suggests that nucleotide 

sequence of the gene provides only part of the genetic information, the surrounding 

environment like chromatin confirmation also contributes to the expression of the trait. Since 

the epigenetic states of chromatin are variable, transfer of a trait from one species/plant to 

another would not only require the transfer of the gene(s) associated with the trait but also the 

appropriate chromatin/epigenetic states so that the trait can express under suitable epigenetic 

environment. It is, therefore, essential to study the epigenetic states of the donor plant/species 

and to ensure that proper re-establishment of the epigenetic state of the genes takes place in the 

recipient plant/species for appropriate expression of the trait (Kumar, 2019b). 

While a sum total of all the genes in an organism is known as genome, epigenome refers to the 

sum total of all the epigenetic changes in DNA (without any alteration in the underlying 
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nucleotide sequence) and/or in the structural components of the genetic material that affect 

expression/activity of the gene/genome. Epigenetics is the study of such variations affecting 

gene expression in the cell/organism (Kumar 2018b). Epigenetic changes include methylation 

of cytosine resulting in the formation of 5-methylcytosine (5-mC) (Kumar et al. 2018), histone 

protein modifications, variation in the biogenesis of small-RNA (sRNA) (Wang et al. 2016). 

Growing evidence indicates the involvement of epigenetic regulation during the developmental 

processes as well as during biotic and abiotic stresses in plants and animals. Epigenetic changes 

may revert back to the original state soon after normalization of the conditions. Interestingly, 

some (∼30%) of the epigenetic changes may be carried over the next generation that often 

results in phenotypic variations (Kumar, 2018b). Thus, it is has become evident that epigenetic 

changes play important roles in acclimatization, stress tolerance, adaptation, and evolutionary 

processes in living organisms (Kumar, 2019a). Therefore, it is important to discover the 

epigenetic machinery of gene regulation for crop improvement towards the development of 

climate-smart crop plants to meet the challenges of food and nutritional security for the global 

population. Since the rates of genetic mutations and phenotypic variations are considerably 

different, they cannot be explained merely based on genetics. Additional machinery such as 

epigenetics can help explaining this enigma (Kumar, 2017). If epigenetics is considered a 

complementary mechanism, many of the phenotypic variations (e.g. dissimilarity between the 

clones) can be easily explained. 

It has been reported that the rate of spontaneous epimutations is higher in the CG context 

because these sites are not retargeted by RdDM. DNA methylation generally refers to the 

addition of a methyl group at the 5th carbon of cytosine as a post-replicative event (Figure 2). 

While CHH methylation is maintained by Domains Rearranged Methyltransferase 2 (DRM2), 

it is responsible for de novo methylation in all the contexts of cytosine at least in Arabidopsis. 

DRM2 is recruited to the target loci by a specialized 24 nucleotide small interfering RNA 

(RNA-directed DNA methylation pathway). Cytosine methylation homeostasis is determined 

by the DNA methylation and demethylation processes. Demethylation of the promoter and/or 

coding region may also be required to activate the expression of specific genes under the 

changing environmental conditions or during the developmental stages of a plant (Li et al., 

2018). A variety of histone modifications and their possible combinations (like H3K4me3 & 

H3K27Ac: activation marks, and H3K9me3 & H3K27me3: repressive marks) affect the 

transcriptional potential of the gene. Histone methylation can also be reversed by the action of 

different types of histone demethylases. Studies also indicate that the genome-wide 

hypo/hyper-methylation induces biogenesis of 24-nt siRNAs, and activates de novo 

(de)methylation pathways. Recent studies reveal a highly cell type-specific nature of epigenetic 

regulation of genes which indicates the need for new technologies to study the functions of 

chromatin regulators in a cell-specific manner, at the specific developmental stage, and in 

proper genomic context. Hence, in-depth studies would be necessary to understand the role of 

the RdDM pathway and the chromatin regulators in epigenetic regulation of gene expression 
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and its deployment in epigenetic engineering of crop plants. However, epigenetic mechanisms 

of gene regulation are yet to be fully understood and utilized as epialleles (the alleles that are 

genetically identical but epigenetically different due to the epigenetic modifications, showing 

variable expression) in crop improvement programs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Epigenetic modifications of the genetic material. (A) Conversion of cytosine (C) into 5-

methylcytosine (5-mC) and other bases, and its reversal/repair.  
 

 

The conventional approaches may not be adequate to meet the projected food requirements, 

both in terms of quantity and quality. Moreover, most of the cultivated crops/varieties have 

reached the yield plateau. Therefore, the need of the day is to deploy modern tools and 

techniques to further enhance the productivity of crop plants, the nutritional quality of the 

product, and to explore the possibility of producing novel molecules (molecular farming) with 

the decreasing availability of natural resources. In view of the biosafety concerns of genetically 

modified organisms currently being associated with the genetic manipulation of crop plants 

(Kumar et al., 20006; Kumar, 2014), epigenetic engineering (supposed to have limited 

biosafety issues) would be a better approach (Kumar, 2018). However, appropriate safety 

guidelines framed by the regulatory agencies of the country must be followed for personnel, 

laboratory and environmental safety (Kumar, 2012; Kumar, 2015b). Thus, epigenome editing 

may provide unprecedented opportunities for the manipulation of biological systems in an 

efficient/effective manner to improve stress tolerance against climatic conditions. 
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Epigenome editing: possibilities and future perspectives 

Epigenome editing is a very promising approach that can usher a new era for novel applications 

of basic research and molecular medicine. Epigenetic editing is based on fusion proteins 

comprising a designed DNA recognition domain that targets an attached enzymatic domain to 

defined genomic target sites.  Because the target recognition of CRISPR/Cas9 complex is based 

on Watson/Crick base-pairing between a guide RNA and one DNA strand of the target site, re-

targeting of CRISPR/Cas9 only requires the introduction of a new guide RNA sequence. 

Histone acetylation and deacetylation play an important role in regulation of gene expression.  

dCas9 fused with HDAC3 protein can function as a synthetic histone-deacetylase to modulate 

gene expression. Different groups of scientists are currently working world over to identify the 

gene(s) involved in epigenetic changes to establish proof of the concept of epigenetic 

manipulation in plant. However, many areas of epigenetics remain to be explored. We still 

know only a little about the factors that regulate targeting of active DNA demethylation during 

developmental stages. Does DNA (de)methylation interplay with other epigenetic features or 

chromatin features? Future research should aim at identifying more developmental processes 

in different species that involve epigenetic regulation. Assessing the contribution of 

transgenerational epimarks to heritable phenotypic variation has been a major challenge as 

many of the chromatin (DNA methylation and histone modification) changes and gene 

expression variants co-segregate with DNA sequence polymorphisms. Nonetheless, there is 

evidence that plants possess heritable epiallelic variations that can be associated with the trait 

of interest and utilized for crop improvement. We are still at the beginning of understanding 

the transgenerational stability of epigenetic variations. Only a little is known to us about the 

role of the environment in the creation of induced epialleles. We can anticipate that soon 

epigenome editing will provide a means to assess the role of a QTL in epiallelic variations 

which may provide an interesting new route for the improvement of crop plants. The proteins 

involved in DNA (de)methylation, histone modification and the mechanisms of ncRNA 

mediated regulation of developmental processes in plants are becoming clear day by day. 

 The discovery of dCas9 has provided a valuable tool for epigenome editing (Thakore et al., 

2016). The recent studies have been focused on regulatory DNA sequences through the 

recruitment of dCas9 fused to the histone acetyltransferase, and Tet1 DNA demethylase to 

activate enhancers (Liu et al., 2016). Braun et al. (2017) used FIRE–Cas9 for reversible 

recruitment of endogenous chromatin complexes to any genomic locus in almost any cell type 

of mammalian system. The enzymes responsible for writing, erasing, and reading epigenetic 

marks are multi-protein complexes and becoming known day by day. By fusing a single subunit 

of a chromatin complex with a chemical-induced proximity tag, Frb (FKBP-rapamycin-binding 

domain of mTOR), Braun et al. (2017) could rapidly recruit intact multi-subunit complexes to 

a specific genomic sequence upon rapamycin (RAP) treatment. Locus specificity was obtained 

through the expression of a complementary dimerizer Fkbp (FK506-binding-protein) fused 
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with a dCas9–MS2 anchor. Focusing on the recruitment of Hp1/Suv39h1 heterochromatin 

complex and the BAF chromatin-remodeling complex, they could demonstrate possibilities of 

both gene repression and activation through epigenome editing. This provides new insight into 

the fine-tuning of epigenetic mechanisms. Recently, Fukushima et al. (2019) demonstrated in 

vivo epigenome editing using a new construct, dCas9-olEzh2 (Ezh2 from Oryzias latipes fused 

to dCas9) to manipulate H3K27me3. They showed that dCas9-olEzh2 accumulates H3K27me3 

at the targeted loci which induced gene repression in Japanese Killifish (Oryzias latipes) 

embryos. These in vivo epigenome editing will be very useful for epigenetic regulation of gene 

expression and heritability of epigenetic modification at targeted genomic loci. 

The views expressed here are those of the author only. These may not necessarily be the views 

of the Institution/Organization the author is associated with. 
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Machine Learning Techniques 

 

Machine Learning 

Learning denotes changes in a system that enable a system to do the same task more efficiently 

the next time or Learning is constructing or modifying representations of what is being 

experienced. Machine learning is a scientific discipline concerned with the design and 

development of algorithms that allow computers to evolve behaviours based on empirical data, 

such as from sensor data or databases. A learner can take advantage of examples (data) to 

capture characteristics of interest of their unknown underlying probability distribution. Data 

can be seen as examples that illustrate relations between observed variables. Discover new 

things or structure that is unknown to humans eg. data mining. A major focus of machine 

learning research is to automatically learn to recognize complex patterns and make intelligent 

decisions based on data. 

Types of Machine Learning  

Broadly, machine learning is classified into two categories i.e. supervised and unsupervised 

learning. Supervised learning generates a function that maps inputs to desired outputs based on 

labelled training data, where the desired output for each object is known. Approaches of 

supervised learning are classification and prediction. The prevalent techniques of supervised 

learning are Naïve Bayes classifier, Logistic Regression, Linear Discriminant Analysis, K-

Nearest-Neighbour classifiers, Artificial Neural Networks, Support vector machine etc.  

Unsupervised learning discovers underlying patterns in the data based on unlabelled training 

data. In other words if data has to be processed by machine learning methods, where the desired 

output is not known, then the learning task is called unsupervised. Approaches to unsupervised 

learning include clustering (e.g., k-means, hierarchical clustering) 

1. Supervised Machine Learning Techniques 

Supervised Classification technique is based on the principles of machine learning techniques 

in which of parameters of inferring a function is estimated based on training data such that a 

set of input vector, which consists of realized values of explanatory factors is being used to get 

desired output values of dependant factors with desired accuracy. This function is also called 

as classifier. This inferred function is expected to predict correct output value for any valid 

input vector. This means, it requires the learning algorithm to generalize from the training data 

to unseen situations with desired accuracy. In order to develop reliable inferred function 

following steps needs to be followed: 

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Sensor
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Supervised_learning
http://en.wikipedia.org/wiki/Unsupervised_learning
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 Selection of appropriate training data set which is to be representative of real world of 

the problem under consideration along with representative sets of output values. 

 Selection of input features (factors) which can able to predict the output with desired 

accuracy but should not be too large in numbers. 

 Determination of structure of the function and corresponding  learning algorithms based 

on optimized performance through cross validation techniques on s sub-set of training 

data set which is also known as validation set. Certain control parameters are used for 

this purpose.    

 Evaluation of the accuracy of the learned function after parameter adjustments on a 

test data set which is different from the training set. 

Large numbers of supervised learning algorithms are available in literature with their 

advantages and disadvantages but there is no single algorithms which can be used on all types 

of data sets. There are four major issues which needs special consideration in supervised 

learning: 

Tradeoff between bias and variance: The prediction error is sum of bias and variance of the 

learning algorithms.  Generally it is desirable that a learning algorithm with low bias should be 

flexible such that it can fit the data set but it should not be that flexible that it fit differently to 

each training data set due to its high variance. Therefore, it is necessary to adjust this tradeoff 

between bias and variance.  

Availability of dataset and complexity of function: In case, simple true function,   learning 

algorithm with high bias and low variance will results reliable inferred function with the help 

of small amount of dataset. But in case of highly complex true function resulting from 

interactions within different components needs large amount of training dataset to build 

learning algorithm with low bias and high variance. Therefore, it is desirable for good learning 

algorithms to automatically adjust the bias/variance tradeoff based on the amount of data 

available and the apparent complexity of the function to be learned. 

Dimensions of input dataset: Large dimension of the dataset may create confusion and it may 

become difficult learning problem even if the true function depends on only small number of 

features. This will results in large variance. Hence, high input dimensionality typically requires 

tuning the classifier to have low variance and high bias. It is always desirable to apply feature 

selection procedures or dimensionality reduction techniques to get desirable output. 

Noisy output values: In case output values are incorrect beyond a limit due to response errors  

then the learning algorithm is expected to lead to undesirable inferred function .This is   case 

where it is usually best to employ a high bias, low variance classifier.  
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The selection of learning algorithms depends on number of other factors such as (i) 

heterogeneity of the data, (ii) redundancy of data and (iii) linear and non-linear relationships 

among the factors etc.  In case the input feature dataset is heterogeneous such as discrete, 

discrete ordered, counts, continuous values then decision tree based methods are easy to apply 

whereas learning algorithms, including support vector machines, linear regression, logistic 

regression, neural networks and nearest neighbor methods can be applied on numerical feature 

which are scaled to similar ranges (e.g., to the [-1,1] interval). If the input features contain 

redundant information in terms of multi-collinearity number of  learning algorithms such as  

linear regression, logistic regression and distance based methods  performs poorly because of 

numerical instabilities. The best way to solve this problem is through imposing regularization 

conditions. Again, if there are complex interactions among features then algorithms based on 

decision trees and neural networks work better due to their inherent capabilities to deal with 

this situation. The selection of the best algorithm can be done using cross validation techniques 

to the given dataset and problem at hand.  Some of the most widely used learning algorithms 

are support vector machines, linear regression, logistic regression, naive Bayes, linear 

discriminant analysis, decision trees, k-nearest neighbor algorithm and Neural Networks 

(multilayer perception). 

Classification and Prediction Techniques 

Let the total sample size of the biological data set is “n” and there are “m” features on which 

data is available. Let, the data matrix of size m x n is represented by  𝐗=(𝑥𝑖𝑗) where, 𝑥𝑖𝑗 

represent data on j-th feature of i-th observation. Further, let 𝐲 = (𝑦1, 𝑦2,… . , 𝑦𝑛) is a matrix of 

response variable which may be categorical in nature depending on number of classes for 

classification problem. 

K-Nearest-Neighbor classifiers (K-ΝΝ): This classifier is based on the distances among 

closest K neighbors to a particular unit. If, sample i and j are represented by 𝐱𝑖 = (𝑥𝑖1 ,

𝑥𝑖2 ,………, 𝑥𝑖𝑚 )′ and 𝐱𝑗 = (𝑥𝑗1 , 𝑥𝑗2 ,………, 𝑥𝑗𝑚 )′ then distances can be calculated based 

on Euclidean distance technique on standardized data set. In order to classify new observation, 

majority vote among K- neighbors is being considered for its classification in a particular class. 

It has been observed that as K increases, the variance of the classifier decreases but its bias 

increases. It has been shown by Friedman 1997; Dudoit et al. (2002), that this classifier is 

highly consistent. Best results can be obtained when feature selection step is employed before 

application of the classifier. 

Artificial Neural Networks: This technique was proposal by Barnard Widrow (1950). This is 

a data driven and non- parametric model based approach. In this, a network of nodes (neurons) 

is being generated through assigning different weights. This includes may be obtained through 

both supervised and unsupervised learning.  The basic principle of learning in this case is 

modifications in synaptic weights which are determinant through learning algorithm. For 
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example in correlation learning rule; weights are adjusted according to Hebb’s rule.  Δ(𝑊𝑖𝑗)= 

𝑂𝑖𝑂𝑗 , where Δ𝑊𝑖𝑗 is change in weights of i-th node, which is connected to j-th node and 𝑂𝑖  is 

output of i-th unit. In case of learning rule via error correction, weights are adjusted by 

minimizing output errors with respect to weights i. e. Δ(𝑊𝑖𝑗)=E(𝑂𝑖𝑂𝑗). This algorithm is being 

used in Perceptron, MADALAINE and back propagation models. This technique is capable of 

solving number of complex problems but it is complex and computationally extensive. 

Classification Tree: The classification tree technique can be broadly classified in two 

categories i.e. (i) binary tree such as CART, QUEST etc. and (ii) multi-way split tree such as 

CRUISE. In order to gain classification accuracy, these techniques use discriminant based 

procedure for splitting. In a CART, node of the tree splitting recursively to make data 

homogeneous till the tree is fully grown. The impurity at node t can be measured by Gini 

diversity index of Breiman et al. 1984 as i(t) = ∑ 𝑝2(𝑘 𝑡⁄ )𝑘 , where, p(k/t) is the probability that 

a sample is in class k given that it falls into node t. Two approaches are normally applied to 

avoid over fitting of data. First, is cross validation approach, with minimal cost-complexity 

pruning method of CART. Second, cross validation multistep look-ahead stopping rule to 

determine the proper depth of the tree. 

Random Forest: This method has been proposed by Breiman (2001) and it is available in 

package form (Random Forest) in R software. It is based on bagging technique which is 

different from boosting. In this case, same training set is being used by each classifier and hard 

to classify sample observation get more weight, while in bagging which is based on 

bootstrapping technique, yields incomplete overlap training samples among classifiers with 

some sample get more weight randomly. This technique generates diversity by taking bootstrap 

samples for each tree generated (bagging). Also, it selects random sub-space of the predictor 

at each node. The number of feature selected at each node may also vary. However, default 

value of number of predictors which is taken is √𝑚. 

Support Vector Machine (SVM): This technique was introduced by Vapnik (1995). This 

technique is based on finding linear hyperplanes in input space and kernel space for avoiding 

over fitting. Let training sample data consist of n pairs ( 𝐱1, 𝑦1) , ( 𝐱2, 𝑦2) , ……. , ( 𝐱𝑛, 𝑦𝑛) 

with 𝐱𝑖 𝜖 𝑅𝑝 and 𝑦𝑖𝜖 {-1, 1} then SVM classifier finds hyperplane (𝑃0) bisecting closest points 

of the data which is linearly seperable. The 𝑃0 is defined as  

{  : f(𝐱) = 𝐱′𝛃 + 𝛽0 = 0} and ‖𝛃‖=1 

Classifier creates a parallel hyperplane P1 such defined as  

(𝑃1) {𝐱′: 𝑓(𝐱′) = 𝐱′𝛃 + 𝛽0 = −1} 

On a point in class -1 closet to 𝑃0 and second hyperplane P2 as 
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(𝑃2) = {𝐱 ∶ 𝑓(𝐱) =  𝐱𝛃 + 𝛽0 = 1}  on a point in class closet to𝑃0. 

The optimum hyperplane for separating the data can be formed by maximizing the 

perpendicular distance between two parallel supporting planes 𝑃1 and 𝑃2 i.e. M.  The resulting 

classifier can be given by  

𝑦̂ = sign (𝐱𝛃 + 𝛽0 ) 

As we know that classes are separable. So, m = 2/‖𝛃‖ there maximization of M leads to 

minimization of ‖𝛃‖/ 2 

Therefore, this problem can be reduced to minimization of  

∅(𝛃) = ‖𝛃‖ / 2 

Subject to  𝑦𝑖 (  𝐱𝑖
′ 𝛃   + 𝛽0  ) ≥ 1 for all {   (𝐱𝑖  , 𝑦𝑖 ) , i= 1,2,……,n  } 

In case data set is not separable then this technique maps the data into higher dimensional space 

where training set is separable via some transformation. 

K : 𝐱        ∅(𝐱). 

A kernel function K (𝐱𝑖 , 𝐱𝑗 ) = < ∅ (𝐱𝑖) , ∅(𝐱𝑗) > computes inner product  in some expanded 

feature  space. Linear or Gaussian kernels are widely used.  

Boosting Method: This method combines weak classifiers and takes weighted majority vote 

of their predictions. It has been developed for improving the performance of any weak learning 

algorithm. It changes adoptively the distribution of training data set based on performance of 

previous classifiers. Therefore, for combining weak classifiers, it takes weighted majority vote 

of the prediction. In this, weighted version of same data set has been used, where weight for 

difficult to classify observation is increased in subsequent classifier.  Adaboost ( Freund and 

Schapire 1997) is an algorithm which creates number of classifiers from same dataset and 

combines the tree using majority vote.  

Naive Bayes Classifier: It is a simple probabilistic classifier based on Bayes theorem. It is also 

known as independent feature model due to its strong assumptions of independence. It based 

on the assumption that inclusion or exclusion of a particular feature in the model is independent 

of inclusion or exclusion of any other feature and their contributions towards probability is 

independent of each other. In many practical applications maximum likelihood method can be 

used in estimation of parameters of this model instead of Bayesian probability. Depending on 

the probability model it can be trained efficiently using supervised learning techniques. It has 

been found in literature that, in spite of its oversimplified assumptions it out performed number 

of current approaches such as boosted trees or random forest under specific situations. One of 

the major advantages of this classifier is that it requires limited amount of training data set for 
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estimation of parameters for classification. Due to the assumption of independence of variables 

only variances are required for estimation instead of full covariance matrix. 

This classifier is best suited when there is high dimensional feature data set. Let C represents a 

class. The probabilistic model for this class is conditional model i.e. P(C/𝑋1, 𝑋2 ,…….,𝑋𝑚) over 

dependent response variable. From application of Bayes theorem we get:  

P(C/𝑋1, 𝑋2 ,…….,𝑋𝑚)𝛼 P(C) p(𝑋1, 𝑋2 ,…….,𝑋𝑚/𝐶) 

The prior probability of j-th class is: P(C=j) = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑗 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 

The likelihood function p(𝑋1, 𝑋2 ,…….,𝑋𝑚)/C) can be written as ∏ 𝑝𝑚
𝑖=1 (𝑋𝑖/𝐶) under the 

assumption of conditional independence of features. Now a new instance can be classified with 

maximum posterior probability obtained as. 

Arg 𝑚𝑎𝑥𝑐𝑗 ∈  𝑐 𝑃(𝐶𝑗)𝜋𝑐  𝑃(𝑋𝑖/𝐶𝑗) 

This technique was further extended by Demichelis et al. (2006). 

Logistic Regression: Let Y denotes the levels of sub-functions within each function of the 

genes.  The number of level may varies for each function. This is also known as the response 

variable, which is nominal in nature i.e. denoting any sub-function with any level does not 

change the interpretation and analysis technique. Now, the columns of X matrix represent 

statistics related to each gene which are explanatory variable for a given response i.e. sub-

functions of a gene. Let there are K+1 possible response levels, then multinomial logistic 

regression model can be written as  

Log [
Pr (y=i/X) 

Pr (y=K+1/X) 
]
 

 = βoi + βi
′Xi , i=1,2,….., K 

where, βoi , i=1,2,….,K are intercept parameter and  β1, β2,……, β  K are K vectors of Gx1 

dimension for slope parameters. This model can be fitted using method of maximum likelihood 

using either Fisher scoring algorithm or New-Raphson algorithm. The likelihood that g-th gene 

will have response level yj can be obtained as  

Pr(Y=yj 
/xj

 
) = 

{
 
 

 
 

Exp(βoi+xj
iβi)

1+∑ Exp(βom+x̅j
′βm) 

K
m=1

,      1 ≤ yj = i ≤ k         

1

1+∑ Exp(βom+x̅j
′βm) 

K
m=1

,          yj = k + 1   

 
 }

 
 

 
 

 

The model fitting information for the reliability of estimated probability, following criterion 

may be calculated for j-th observation. 
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-2logL= -2∑
Wj

σ2j  fj log Pr(Y=yj/xj) 

where, wj and fj are weight and frequency of j-th observation and σ2 is the dispersion 

parameter. Further, Akaike Information Criterion (AIC) can also be obtained as 

AIC = -2logL + 2p 

where , p is the number of parameters in the model. Cox and Snell (1989) proposed following 

coefficient of determinant for model fitting information 

R2= 1-{
L(O)

L(β)̂
}
2
n⁄

 

where L(O) is the likelihood of the interrupt model only and L(β̂) is the likelihood of the 

specified model for sample size n. The maximum value of R2 is Rmax
2 = 1 − {L(O)}

2
n⁄ . The 

adjusted coefficient of determinant (Magelkerke 1991) can be written as  

Radj
2  = 

R2

Rmax
2  

The values of R2 and Radj
2  are found to be the best criterion for indicating better models while 

fitting. The functional prediction re-substitutions accuracy has been also estimated from 

misclassification errors matrices. Further, sensitivity and specificity has also calculated.  

Methods for Prediction Error Estimation 

It is commonly acknowledged that there is a bias-variance tradeoff in estimating prediction 

errors. In the conventional n>p situation, the .632+ bootstrap is very popular for having low 

variability and only moderate bias. However, the work of Molinaro et. al. (2005) and Jiang and 

Simon (2007) suggest that the .632+ bootstrap can run into problems in the n<p situation. Jiang 

and Simon (2007) proposed a repeated leave-one-out bootstrap (RLOOB) method and an 

adjusted bootstrap method. The performance of adjusted bootstrap method is robust in various 

situations and it achieves a good compromise in the bias-variance tradeoff. The techniques of 

prediction errors described here are taken from (Ahn and Moon, 2010). In this section, main 

concentration is given to the bootstrap related methods for estimating prediction errors.  

 Leave-one-out cross-validation: Cross-validation (Stone (1974)) avoids this problem by 

removing the data point to be predicted from the learning set.  The leave-one-out cross-

validation estimate can be expressed as 

( )1
1ˆ { ( , )}

nLOOCV
n i i ii

e I y r t x
n 

  ,  
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where x(−i ) represents the learning set with xi removed . It calculates the rate of misclassified 

responses when predicting for each specimen using a learning set containing all other 

observations in the sample. Correct application of the method to high dimensional microarray 

data requires feature selection for every leave-one-out learning set x(−i ) of size n −1. The leave-

one-out cross-validation produces almost unbiased estimate for the prediction error and has 

been a common choice for small sample problems. The investigation of Molinaro et al. (2005) 

suggests that the leave-one-out cross-validation method performs no worse than other cross-

validation methods and split sample methods in genomic studies with small to moderate sample 

sizes. However, when the sample size is small, the leave-one-out cross-validation method is 

often criticized for having very large variation. The large variability is ascribed mainly to the 

similarity between the leave-one-out learning sets x(−i ) , i=1,...n, and the sparseness of the data. 

The similarity between the sets x(−i ) results in large covariance between the terms of ˆ LOOCV
ne

, hence increases the overall variance of the estimate. 

Ordinary Bootstrap: Ordinary Bootstrap method given by Efron (1998) has the problem that 

the learning and test sets overlap. In this method bootstrap samples of size n are repeatedly 

drawn from the original data x by simple random sampling with replacement. In this, a 

prediction rule is built on a bootstrap sample and tested on the original sample, averaging the 

misclassification rates across all bootstrap replications gives the ordinary bootstrap estimate. 

This method seriously underestimates the prediction error since a subset of data is used both in 

building and in assessing the prediction model. 

 Bootstrap Cross-Validation: This method is proposed by Fu et. al. (2005) to handle small 

sample problems. The procedure generates B bootstrap samples of size n from the observed 

sample and then calculates a leave-one-out cross-validation estimate on each bootstrap sample. 

Averaging the B cross-validation estimates gives the bootstrap cross-validation estimate for the 

prediction error. The paper of Fu et. al. (2005) did not carefully address the issue of feature 

selection. When the method is applied to high dimensional gene expression data, it is to be 

noted that feature selection must be conducted in this method on every leave-one-out learning 

set derived from every bootstrap sample. Since an original observation can appear more than 

once in a bootstrap sample, a leave-one-out learning set may overlap with the left out item 

when the cross-validation procedure is applied on a bootstrap sample. Consequently, the 

bootstrap cross-validation method tends to underestimate the true prediction error. 

Leave-One-Out Bootstrap: The leave-one-out bootstrap procedure given by Efron (1983) 

generates a total of B bootstrap samples of size n. Each observed specimen is predicted 

repeatedly using the bootstrap samples in which the particular observation does not appear. In 

this way, the method avoids testing a prediction model on the specimens used for constructing 

the model. The leave-one-out bootstrap estimate is given by 
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*,
1

1 1ˆ { ( , )}
| | i

nLOOBS b
n i ii b Ci

e I y r t x
n C 

    

where Ci is the collection of bootstrap samples not containing observation i and | Ci | is the 

number of such bootstrap samples. Feature selection and class prediction should be performed 

on each bootstrap sample x*,b, b=1,…,B. 

The leave-one-out bootstrap is basically a smoothed version of the leave-one-out cross-

validation. To see this, the bootstrap samples in Ci  can be viewed as random samples of size n 

generated from the leave- i -out data set x(−i ). Bootstrap samples are more different between 

each other than the original leave-one-out sets. Moreover, for each specimen i, the leave-one-

out bootstrap method averages on the errors from the multiple predictions made on the 

bootstrap samples in Ci. As a result, the leave-one-out bootstrap estimate has much smaller 

variability than the leave-one-out cross validation estimate. On the other hand, a bootstrap 

sample of size contains roughly .632n distinct observations from the original sample. It is often 

inadequate to represent the distribution of the original data when the sample size n is small. 

Hence the leave-one-out bootstrap estimate tends to overestimate the true prediction error. 

 Out-of-Bag Estimation: The out-of-bag estimation procedure is given by Breiman (1996). 

The out-of-bag estimate for the prediction error is a by-product of bagging predictors. The out-

of-bag estimate is the misclassification rate when predicting for each observation by the class 

that wins the majority votes from the multiple predictions, made on the bootstrap samples in 

which the particular observation is out-of-bag (i.e., not included). The out-of-bag estimation 

makes an interesting comparison to the leave-one-out bootstrap. The out-of-bag estimation 

employs a majority vote on the multiple predictions made for observation i based on the 

bootstrap samples in Ci, while the leave-one-out bootstrap takes an average on errors of these 

predictions. The out-of-bag estimation can be viewed as a non-smooth variant and we envisage 

it to have larger variability than the leave-one-out bootstrap when the sample size is small.  

632+ Bootstrap: The .632+ bootstrap is proposed by Efron and Tibshirani (1997) in order to 

reduce the upward bias of the leave-one-out bootstrap. The estimate has the form 

.632ˆ ˆ ˆ(1 )LOOBS RS
n n ne we w e     

where the weight w is between 0 and 1 and ˆ RS
ne is the resubstitution estimate. Taking w = 0.632 

gives the .632 bootstrap originally proposed by Efron (1983). When the resubstitution error is 

zero, the .632 bootstrap estimate becomes ˆ0.632 LOOBS
ne , this results in systematic downward 

bias when there are no class differences. The .632+ bootstrap aims to circumvent this problem 

by increasing the weight w with respect to the growing level of overfitting. It often performs 

well in classification problems with n > p. For microarray data with n < p, the overfitting 
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problem always exists and the resubstituion error estimate is often close to zero. The .632+ 

bootstrap tends to put too much weight on the leave-one-out bootstrap estimate in this situation.  

Repeated Leave-One-Out Bootstrap (RLOOB) and Adjusted Bootstrap: The Repeated Leave-

One-Out Bootstrap and an Adjusted Bootstrap method are proposed by Jiang and Simon 

(2007). For every original sample x, leave out one observation at a time and denote the resulting 

sets by x(−1 ),…, x(−n ). From each leave-one-out set x(−i ) , draw B1 bootstrap learning sets of size 

ln. Build a prediction rule on every bootstrap learning set generated from x(−i )  and apply the 

rule on the test observation xi. The repeated leave-one-out bootstrap estimate is the 

misclassification rate calculated across all the bootstrap runs and all n observations. It can be 

expressed as 

 1 *,
( )1 11

1 1ˆ ( ) { ( , )}i

i

n B bRLOOB
n i i ii b

e l I y r t x
n B  

    

where 
*,

( )
ib

ix  is the bi 
th bootstrap learning set of size ln drawn from the set x(−i ). Feature 

selection should be carried out on every bootstrap learning set 
*,

( )
ib

ix   for bi = 1,…, Bi and i= 

1,…,n. 

Let c(l) be the chances that an observation appears in a bootstrap sample of size ln. A simple 

probabilistic argument indicates that c(l) ≈1−e−l. A bootstrap sample of size ln contains 

approximately c(l).n distinct observations from the original sample. For example, for l =1,2,3, 

the number of distinct observations is about 0.632n, 0.865n, 0.95n respectively. With l = 1, the 

repeated leave-one-out bootstrap closely resembles the leave-one-out bootstrap procedure. As 

l increases, a bootstrap learning set for a left-out item contains more distinct observations. On 

one hand, the method acquires additional accuracy and brings a reduction on the upward bias. 

On the other hand, the bootstrap learning sets obtained from the same leave-one-out set become 

more similar in structure and this raises the variability of the estimation.  

The learning behaviour of the repeated leave-one-out bootstrap can be modelled as a function 

of the number of distinct observations included in the bootstrap learning sets. The trend of a 

learning process as a function of sample size is often modelled in the machine learning 

literature by a flexible curve following an inverse power law. Let m be the expected number of 

distinct observations to appear in a bootstrap sample of size ln. Let e(m) be the expected error 

rate given the observed sample using the repeated leave-one-out bootstrap method with 

bootstrap learning sets of size ln. Ideally, e(m) should follow the inverse power law 

e(m)= am−α + b 

where a , α and b are the parameters. 
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The Adjusted Bootstrap method estimates the prediction error as follows. Pick J bootstrap 

learning set sizes,  lj n,  j =1,..., J . Compute the repeated leave-one-out bootstrap estimate 

ˆ ( )RLOOB
n je l  with bootstrap learning sets of size lj n. Denote ˆ ( )RLOOB

n je l  by e(mj) where 

mj= c(lj).n is the expected number of distinct original observations in a bootstrap learning set 

of size lj n. Fit an empirical learning curve of the form e(mj) = amj
−α + b with j=1, …, J. The 

estimates â , ̂  and b̂  for the parameters are obtained by minimizing the non-linear least 

squares function  
2

1
( )

J
j jj

e m am b



  . 

The adjusted bootstrap estimate for the prediction error is given by 

ˆ ˆˆ ˆABS
ne an b  . 

It is the fitted value on the learning curve as if all original observations contributed to an 

individual bootstrap learning set. 

In practice, the choice of l can range from somewhere close to 1 to a value greater than 5. 

Repeated leave-one-out bootstrap estimates typically have lower variability than leave-one-out 

cross-validation. They have an upward bias that decreases and their variability increases with 

the expected number of distinct original observations selected in bootstrap. Fitting an inverse 

power law curve to a series of repeated leave-one-out bootstrap values enables us to define a 

conservative estimate (not subject to downward bias) that provides a compromise between 

estimates with large variability and large upward bias. Inverse power law curve is a flexible 

way to model a learning process, and is quite typical in describing machine learning, human 

and animal learning behaviour (Shrager et. al. (1988)). Mukherjee et al. (2003) studied sample 

size requirements in microarray classification using a similar learning curve. 

2. Unsupervised Machine learning: Clustering 

The most common unsupervised learning is Cluster analysis. It is more primitive technique in 

that no assumptions are made concerning the number of groups or the group structure. 

Grouping is done on the basis of similarities or distances (dissimilarities). The inputs required 

are similarity measures or data from which similarities can be computed.  

Similarity measures  

Most efforts to produce a rather simple group structure from a complex data set necessarily 

require a measure of “closeness”, or “similarity”. There is often a great deal of subjectivity 

involved in the choice of a similarity measure. Important considerations include the nature of 

the variables (discrete, continuous, binary) or scales of measurement (nominal, ordinal, 

interval, ratio) and subject matter knowledge. When items (units or cases) are clustered, 
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proximity is usually indicated by some sort of distance. On the other hand, variables are usually 

grouped on the basis of correlation coefficients or like measures of association.  

Distances and Similarity Coefficients for Pairs of Items  

The Euclidean (straight-line) distance between two p-dimensional observations (items) 

  

Ordinarily, A=S
-1

, where S contains the sample variances and covariances. However, without 

prior knowledge of the distinct groups, these sample quantities cannot be computed. For this 

reason Euclidean distance is often preferred for clustering.  

Another distance measure is the Minkowski metric, given as 

 

Genetic Distance  

Genetic distance is “that difference between two entities that can be described by allelic 

variation” (Nei, 1973). This definition was later elaborated by Nei (1987) as “the extent of gene 

differences…between populations or species that is measured by some numerical quantity”. A 

more comprehensive definition of genetic distance is “any quantitative measure of genetic 

difference, be it at the sequence level or the allele frequency level that is calculated between 

individuals, populations or species” (Beaumont et al., 1998).  

On the basis of data obtained by measurement of quantitative traits in inbred lines, Smith et al. 

(1991) suggested a measure of genetic distance as follows: 
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the var T
(i) 

is the variance for the ith trait over all inbreds.  

Various genetic distance measures have been proposed for analysis of molecular marker data 

for the purpose of genetic diversity analysis. For molecular marker data where the amplification 

products may be equated to alleles, as in case of simple sequence repeats (SSRs) and restriction 

fragment length polymorphisms (RFLPs), allele frequencies can be calculated. The genetic 

distance between individual i and j can be estimated using the formula, 

 

where X
ai 

is the frequency of the allele a for individual i, n is number of alleles per locus, and 

r is constant based on the coefficient used. In its simple form (i.e., when r=1), genetic distance 

can be calculated as 

 

when r = 2, d
ij 

is referred to as Rogers’ (1972) measure of distance (RD), where 

 

 

Although allele frequencies can be calculated for some of the molecular markers, the data is 

most widely employed to generate a binary matrix for statistical analysis. The commonly used 

measures of genetic distance or genetic similarity (GS) using such binary data are (i) Nei and 

Li’s (1979) coefficient(GD
NL

), (ii) Jaccard’s (1908) coefficient (GD
j
), (iii) simple matching 

coefficient (GD
SM

) (Sokal and Michener, 1958), and (iv) 

Modified Rogers’ distance (GD
MR

). Genetic distances determined by these measures can be 

estimated as follows:  
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where N
11 

is the number of bands – alleles present in both individuals; N
00 

is number of bands-

alleles absent in both individuals; N
10 

is the number of bands-alleles present only in the 

individual I; N
01 

is the number of bands-alleles present only in the individual j; and N represents 

the total number of bands-alleles. Appropriate choice of a genetic distance measure, on the 

basis of the type of the variable and scale of measurement, is an important component in the 

analysis of genetic diversity among set of genotypes (Mohammadi and Prasanna, 2003).  

Clustering Methods 

Distance-based clustering methods can be categorized into two groups: hierarchical and 

nonhierarchical. 

Hierarchical Clustering methods  

Hierarchical clustering methods proceed by either a series of successive mergers or by a series 

of successive divisions. Agglomerative hierarchical methods start with the individual objects. 

Thus, there are initially as many clusters as objects. The most similar individuals are first 

groped, and these initial groups are merged according to their similarities. Eventually, as the 

similarity decreases, all subgroups are fused into a single cluster. The following are the steps 

in the agglomerative hierachical clustering algorithm for grouping N objects  

i. Start with N clusters, each containing a single entity and an N x N symmetric matrix 

of distances (or similarities) .ikdD   

ii. Search the distance matrix for the nearest (most similar) pair of clusters. Let the 

distance between “most similar” clusters U and V be d
uv

.  

iii. Merge clusters U and V. Label the newly formed cluster (UV). Update the entries in 

the distance matrix by (a) deleting the rows and columns corresponding to clusters U 

and V and (b) adding a row and column giving the distances between cluster (UV) 

and the remaining clusters.  

iv. Repeat Steps 2 and 3 a total of N – 1 times. (All objects will be in a single cluster at 

termination of the algorithm). Record the identity of clusters that are merged and the 

levels *(distances or similarities) at which the mergers take place.  

Among various agglomerative hierarchical methods like, single linkage, complete linkage, 

average linkage, centroid, Ward’s methods, the UPGMA (Unweighted Paired Group Method 

using Arithmetic averages) (Sneath and Sokal, 1973; Panchen, 1992) is the most commonly 

adopted clustering algorithm, followed by the Ward’s minimum variance method (Ward, 

1963). For more details on hierarchical clustering methods reference may be made to Johnson 

and Wichern (1996).  
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Non-hierarchical Clustering methods  

The nonhierarchical clustering procedures do not involve construction of dendrogams or trees. 

These procedures, also frequently referred to as “K-means clustering”, are based on “sequential 

threshold”, “parallel threshold”, or “optimizing” approaches for assigning individuals to 

specific clusters, once the number of clusters to be formed is specified (Everitt, 1980). 

MacQueen [17] suggests the term K-means for describing his algorithm that assigns each item 

to the cluster having the nearest centroid (mean). In its simplest version, the process is 

composed of these three steps.  

i. Partition the items into K initial clusters.  

ii. Proceed through the list of items, assigning an item to the cluster whose centroid 

(mean) is nearest. (Distance is usually computed using Euclidean distance with either 

standardized or unstandardized observations). Recalculate the centroid for the cluster 

receiving the new item and for the cluster losing the item.  

iii. Repeat Step 2 until no more reassignments take place.  

Rather than starting with a partition of all items into K preliminary groups in Step 1, we could 

specify K initial centroids (seed points) and then proceed to Step 2. 

The final assignment of items to clusters will be, to some extent, dependent upon the initial 

partition or the initial selection of seed points. Experience suggests that most major changes in 

assignment occur with the first reallocation step. For performing nonhierarchical clustering 

procedure different statistical packages such as SAS [FASTCLUS] and SPSS [QUICK 

CLUSTER] are available. Nonhierarchical clustering methods are rarely used for analysis of 

intraspecific genetic diversity in crop plants. The primary reason could be the lack of prior 

information about the optimal number of clusters that are required for accurate assignment of 

individuals.  

Choice of a Clustering Method  

UPGMA method has been widely used in the past literature. Although some studies indicated 

the relative advantages of UPGMA clustering algorithm in terms of consistency in grouping 

biological materials with relationships computed from different types of data, a single 

clustering method might not be always optimal or effective in revealing genetic associations. 

Despite some favourable attributes in UPGMA, the underlying assumptions are rarely met. 

Five clustering methods, namely UPGMA, UPGMC (Unweighted Paired Group Method using 

Centroids), Single Linkage, Complete Linkage, and Median, were compared for their utility in 

revealing genotype associations in barley germplasm collections (Peeters and Martinelli, 

1989). UPGMA and UPGMC were found to be almost comparable with a relatively high level 

of accuracy, in accordance with pedigrees, compared to other methods. Single Linkage and 
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Median clustering methods led to “chaining effect”, which gave poor resolution of individual 

groups and complicated the interpretation of results.  

One way of comparing the efficiency of different clustering algorithms is through estimation 

of the “cophenetic correlation coefficient”, which is a product moment correlation coefficient 

measuring agreement between the dissimilarity-similarity indicated by a phenogram-

dendrogram as output of analysis and the distance-similarity matrix as input of cluster analysis. 

A method yielding a high cophenetic correlation coefficient can be considered as an appropriate 

method for a particular analysis (Romesburg, 1984). The degree of fit can be interpreted 

subjectively as; 0.9≤ r, very good fit; 0.8 ≤ r < 0.9, good fit; 0.7 ≤ r < 0.8, poor fit; r < 0.7, very 

poor fit (Rohlf, 1992). However, a low cophenetic correlation coefficient does not mean that 

the dendrogram has no utility, but only indicates that some distortion might have occurred. For 

a large sample of individuals, the cophenetic correlation coefficients have similar values and 

are not affected by the number of characters.  

Determination of optimal number of clusters  

Another important aspect in cluster analysis is determining the optimum number of clusters or 

number of acceptable clusters. In essence, this involves deciding where to “cut” a dendrogram 

to find the true or natural groups. An “acceptable cluster” is defined as “a group of two or more 

genotypes with a within-cluster genetic distance less than the overall mean genetic distance 

and between cluster distances greater than their within cluster distance of the two clusters 

involved” (Brown-Guedira et al., 2000). Thompson et al., (1998) find that consistency of 

clustering based on different methods of grouping, provides strong evidence that natural 

clusters are present and they also used the multidimensional scaling for the evidence of the 

major grouping of genotypes in the cluster analysis. Also suggested that the second eigen value 

of similarity matrix to set at 0.75 to be certain that most of the variation is explained by the 

first PC. Using molecular marker data, Melchinger (1993) compared PCA, Principal 

Coordinate analysis (PcoA) and cluster analysis with respect to their efficiency in analyzing 

genetic diversity in crop plants. Messmer et al., (1992) suggested that to extract maximum 

information for molecular marker data, PCA or PCoA could be used in combination with 

cluster analysis.  
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Supervised Machine Learning  

(Practical) 
 
 
 

setpath:setwd("path of working directory"); 

 

# Reading entire data set into matrix named with ‘bcdata’ 

 

bcdata<- read.csv("Filename”.txt")  

 

# Data segregation into dependent and independent variables  

 

databcall <- subset(bcdata,select=c(-Samplecodenumber,-Class)) 

classesbcall <- subset(bcdata,select=Class) 

 

# Data partitioning into test and training sets  

 

databctrain <- databcall[1:400,] 

classesbctrain <- classesbcall[1:400,] 

databctest <- databcall[401:699,] 

classesbctest <- classesbcall[401:699,] 

  

# SMV modeling 

 

# Install the packages 

 

install.packages("e1071") 

model <- svm(databctrain, classesbctrain) 

pred <- predict(model, databctest) 

print(model) 

summary(model) 

#  tune(svm, train.x=databctrain, train.y=classesbctrain, validation.x=databctest, 

validation.y=classesbctest, ranges = list(gamma = 2^(-1:1), cost = 2^(2:4)), control = 

tune.control(sampling = "fix")) 

 

# Confusion Matrix  

 

table(pred,t(classesbctest)) 
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# Random Forest  

 

Library(randomForest) 

model_rf <-randomForest(V1~., data=databctrain, ntree=1000, proximity=TRUE) 

rf_Predt<-predict(model_rf, databctest) 

 

# Artificial Neural Network 

 

# Install the packages 

 

install.packages("neuralnet") 

install.packages("nnet") 

install.packages("ggplot2") 

install.packages("dplyr") 

install.packages("reshape2") 

 

# Load the libraries 

 

library(neuralnet) 

library(nnet) 

library(ggplot2) 

library(dplyr) 

library(reshape2) 

 

# Load the data 

 

data("iris") 

 

# Set the seed 

 

set.seed(123) 

 

# Distribution of each feature in the iris data set 

 

exp_iris <- melt(iris) 

exp_iris %>% 

  ggplot(aes(x = factor(variable), y = value)) + 

  geom_violin() + 

  geom_jitter(height = 0, width = 0.1, aes(colour = Species), alpha = 0.7) + 

  theme_minimal() 



High Dimensional Genome data Analysis by R and Open Source Tools CAAST-2019 

 

Page | 169 

 

# Convert observation class and Species into vector. 

 

labels <- class.ind(as.factor(iris$Species)) 

 

# Generic function to standardize a column of data. 

 

stand <- function(x){ 

  (x-min(x))/(max(x)-min(x)) 

} 

 

# Standardize the data 

 

iris[, 1:4] <- lapply(iris[, 1:4], stand) 

 

# Combine level and predictors 

 

combine_iris <- cbind(iris[,1:4], labels) 

 

# Formula for fitting 

 

f <- as.formula("setosa + versicolor + virginica ~ Sepal.Length + Sepal.Width + Petal.Length 

+ Petal.Width") 

 

# Fitting of the data 

iris_fit <- neuralnet(f, data = combine_iris, hidden = c(16, 12), act.fct = "tanh", linear.output 

= FALSE) 

 

#Plot Neural Network 

 

plot(iris_fit) 

 

# Accuracy of Neural Network 

 

iris_preds <- neuralnet::compute(iris_fit, combine_iris[, 1:4]) 

original_vals <- max.col(combine_iris[, 5:7]) 

pr.nn <- max.col(iris_preds$net.result) 

print(paste("Model Accuracy: ", round(mean(pr.nn==original_vals)*100, 2), "%.", sep = "")) 

 

 



High Dimensional Genome data Analysis by R and Open Source Tools CAAST-2019 

 

Page | 170 

R code for Un-Supervise learning  

(k-mean Clustering and Hierarchical Clustering) 

 

 

#setwd("F:\\Iris demo") 

 

library(datasets) 

data(iris) 

dim(iris) 

 

############# K-means Clustering ############### 

iris.new<- iris[,c(1,2,3,4)] 

iris.class<- iris[,"Species"] 

result<- kmeans(iris.new,3) 

result$size 

result$centers 

result$cluster 

par(mfrow=c(2,2), mar=c(5,4,2,2)) 

plot(iris.new[c(1,2)], col=result$cluster) 

plot(iris.new[c(1,2)], col=iris.class) 

plot(iris.new[c(3,4)], col=result$cluster) 

plot(iris.new[c(3,4)], col=iris.class) 

table(result$cluster,iris.class) 

 

############ Heirarchical Clustering ############ 

m <- hclust(dist(iris[,1:4]), method="ave") 

plot(m, cex=0.5) 

clusters = cutree(m, 3) 

table(clusters, iris$Species) 
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Genome Editing Using CRISPR/Cas9 

(Practical) 

 

1. Genome Editing 

Genome editing is a way of making specific changes to the DNA of a cell or organism. An 

enzyme cuts the DNA at a specific sequence, and when this is repaired by the cell a change or 

‘edit’ is made to the sequence. 

 Genome editing is a technique used to precisely and efficiently modify DNA within a 

cell 

 It involves making cuts at specific DNA sequences with enzymes called ‘engineered 

nucleases’. 

 Genome editing can be used to add, remove, or alter DNA in the genome 

 By editing the genome the characteristics of a cell or an organism can be changed.  

2. Where is genome editing used? 

Genome editing can be used:  

 For research: Genome editing can be used to change the DNA in cells or organisms 

to understand their biology and how they work. 

 To treat disease: Genome editing has been used to modify human blood cells that are 

then put back into the body to treat conditions including leukemia and AIDS. It could 

also potentially be used to treat other infections (such as MRSA) and simple genetic 

conditions (such as muscular dystrophy and hemophilia). 

 For biotechnology: Genome editing has been used in agriculture to genetically 

modify crops to improve their yields and resistance to disease and drought, as well as 

to genetically modify cattle that don’t have horns. 

3. Crispr/Cas9 System 

Class 2 Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) systems, which 

form an adaptive immune system in bacteria, have been modified for genome engineering. 

Prior to CRISPR, genome engineering approaches like zinc finger nucleases (ZFNs) or 

transcription-activator-like effector nucleases (TALENs) required scientists to design and 

generate a new nuclease pair for every genomic target. Due to its comparative simplicity and 

adaptability, CRISPR has rapidly become the most popular genome engineering approach.  



High Dimensional Genome data Analysis by R and Open Source Tools CAAST-2019 

 

Page | 172 

 

Engineered CRISPR systems contain two components: a guide RNA (gRNA or sgRNA) and 

a CRISPR-associated endonuclease (Cas protein). The gRNA is a short synthetic RNA 

composed of a scaffold sequence necessary for Cas-binding and a user-defined ∼20 

nucleotide spacer that defines the genomic target to be modified. Thus, one can change the 

genomic target of the Cas protein by simply changing the target sequence present in the 

gRNA.  

CRISPR was originally employed to knock out target genes in various cell types and 

organisms, but modifications to various Cas enzymes have extended CRISPR to selectively 

activate/repress target genes, purify specific regions of DNA, image DNA in live cells, and 

precisely edit DNA and RNA. Furthermore, the ease of generating gRNAs makes CRISPR 

one of the most scalable genome editing technologies. This advantage makes CRISPR perfect 

for genome-wide screens.  

FOR FURTHER INFORMATION ON CRISPR PLEASE VISIT: 

https://www.addgene.org/crispr/guide/ 

 

https://www.addgene.org/crispr/guide/
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For using CRISPR/Cas9 for gene editing, it is very important to consider the guide RNA 

sequence and for this bioinformatics is an efficient way for guide RNA, on target and off 

target predictions.  

In this lecture, let’s take an example of the tool CCTop that essentially gives the desired 

predictions. 

4. CCTop 

CCTop provides an intuitive user interface with reasonable default parameters that can easily 

be tuned by the user. From a given query sequence, CCTop identifies and ranks all candidate 

sgRNA target sites according to their off-target quality and displays full documentation. 

CCTop was experimentally validated for gene inactivation, non-homologous end-joining as 

well as homology directed repair. Thus, CCTop provides the bench biologist with a tool for 

the rapid and efficient identification of high quality target sites. 

REFER TO https://www.ncbi.nlm.nih.gov/pubmed/25909470 FOR DETAILED 

INFORMATION ON CCTop 

Search Guidelines 

 name: provide a descriptive name for your search. This name will be used for the 

output files to download so that you can keep track of different searches. 

 Select either single query or batch search: in the first case, the sequence can be up 

to 500 nucleotides long. Paste a plain sequence, not fasta format. Only characters 

representing valid nucleotides (A,a,C,c,G,g,T,t,N,n) will be considered and any other 

character will be discarded. In the second case you can provide a (multi-)fasta file 

with any number of sequences and a total size of up to 500KB. 

 PAM type: apart from the protospacer adjacent motif (PAM) recognized by the Cas9 

protein of Streptococcus pyogenes (SP), other motifs have been identified for 

different bacterial species. In addition, it has been shown that the Cas9 endonuclease 

in SP can also cleave sgRNA target sites followed by ‘NAG’, however with efficiency 

reduced to ∼20% , rendering a PAM motif ‘NRG’. Selecting a PAM motif other than 

the one recognized by the Cas9 of SP will disable the use of the core parameters for 

off-target site search. They have also included the PAM of the Cpf1 endonuclease , 

from Acidaminococcus or Lachnospiraceae, that recognizes a 'TTTN' motif. 

Target selection  

 target site length: the length of the sgRNA target site, excluding the PAM sequence, 

can be from 15 to 23 bases. 

https://www.ncbi.nlm.nih.gov/pubmed/25909470
http://www.addgene.org/crispr/guide/#PAM
http://www.addgene.org/69982/
http://www.addgene.org/69988/
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 target site 5’ limitation: typical in vitro transcription promoters, like the T7 or the 

U6, require one or two leading ‘G’ respectively. However, we and others found that 

adding one or two Gs to the desired target sequence can also give valid sgRNAs that 

induce double strand breaks (DSBs). This release of restriction identifies many more 

target sites in the query sequence (hence ‘NN’ is the default value). 

 target site 3’ limitation: for C. elegans it has been shown that ‘GG’ at the 3’ site 

enhances the introduction of a DSB. However, as with the previous field, you can 

specify any valid sequence of two bases to restrict the list of possible CRISPR/Cas9 

target sites. 

 in vitro transcription: Select your in vitro transcription method. They will provide 

the forward and reverse oligos to clone each candidate sgRNA into the appropriate 

vector. If you select "Custom" you can specify your overhangs, which will be 

appended to the 5' of the repective primers. 

Off-target prediction  

 max. total mismatches: can be set to 0-5. Note: more than four mismatches in total 

prevent DSB induction  

 max. core length: Mismatches at a distance to the PAM, will still allow the 

introduction of a DSB, while mismatches close to the PAM will abolish the 

introduction of a DSB. The core is a simplified parameter to account for these 

findings and is defined as the nucleotides adjacent to the PAM (12 by default, can be 

set to 2-20). The checkbox in front allows to enable/disable the core parameters. The 

prediction of off-target sites taking into account the core is only available when using 

the PAM motif from S. pyogenes. In the other cases there is not yet experimental 

evidence suggesting that the core can be beneficial. 

 max. core mismatches: can be set to 0-2. Note: in the core, more than 2 mismatches 

abolishes DSB introduction at the potential off-target position  
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 species: define in which genomic context off-targets should be predicted. 

Output 

Single query 

During search, a page will auto refresh indicating the progress, i.e. how many candidate 

sgRNAs were identified and which is the current candidate under analysis. After the 

search process you will automatically be forwarded to the results page. In the following 

example a genomic sequence from medaka Pax-6 was used.  

 

The page provides links:  

 to download the full results file (tab separated) like shown in the table at the bottom. 

 to download a fasta file containing all identified sgRNA target sites 

 to visualize the query sequence in the UCSC browser with color coded sgRNA target 

site location (this link only appears if the query sequence was of the same origin as 

the targeted genome and the genome is available through UCSC) 
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Further, the input parameters are displayed for overview. A graphical representation of the 

query sequence with the identified sgRNA target sites (colored by score, see below) as well 

as a full list of all candidates is given ranked by taking into account the number of total off-

target sites, the distribution of mismatches and the proximity to exons. It is possible to click 

on any of the displayed target sites to focus the list below on the output corresponding to this 

site. For each sgRNA target site, cloning oligonucleotides (5’-3’ orientation) are provided 

depending of the in vitro transcription method selected. For the T7 promoter, if the candidate 

sgRNA sequence does not start with two Gs, the sequence is extended or the initial bases are 

changed to obtain the required two Gs at the 5’ end. The extended or substituted bases are 

given in small case for recognition. For the U6 promoter the same procedure is taken only 

that in this case only one G at the 5’ end is required. In other case, the given overhang 

sequence is appended to the identified sgRNA target sequence. Detailed information is 

provided for each potential off-target site (only at most 20 are shown, for the full list refer to 

the .xls file):  

 genomic coordinates: with UCSC link, if applicable 

 strand: orientation of the (off-) target site 

 MM: number of mismatches 

 target_seq: off-target sequence with highlighted mismatches in red, core in square 

brackets 

 PAM: endogenous PAM of the (off-) target site 

 distance: distance to the closest exon (0 if target site and exon coordinates overlap; 

NA for target sites farther than 100kb to the next exon). Further information on the 

location of the off-target site is provided by a colour code: green = intergenic; yellow 

= intronic; red = exonic. 

 gene name: the corresponding gene name 

 gene id: the corresponding gene id (with ENSEMBL link, if applicable) and 

identifier. For medaka, additional genes were included based on RNA-seq data from 

different embryonic stages (unpublished data; XLOC identifier). 

The tab separated output file has the same structure as the displayed results table:  
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Instead of the color mismatch representation in the target_seq, an additional column is added 

displaying the alignment of each off-target to the corresponding on-target. Each candidate 

(target) is labelled with the prefix "T" and a correlative number from 1 to the number of 

candidates. Candidates are scored from 1000 - suggested best choice to 0 - worst choice. This 

score takes into account the number of off-targets in the genome, their quality, i.e. number of 

mismatches and position with respect to the PAM, and the distance to gene exons. The off-

target sites for each target site are internally ranked by decreasing likelihood of potential Cas9 

activity. If the query sequence is derived from the same genome against which the off-target 

sites were predicted, the first hit of each target is the candidate target itself, displaying its 

properties. 

Batch query 

The result page for a batch search is slightly different. During the search process the page 

indicates which sequence is being analysed and the refresh time is longer. For this kind of 

tasks it is advisable to provide a valid email address so that when the search is finished this 

will be notified with a message to that address. Once the search process is finished 

successfully the result page will offer a link to download the full set of results in an archive 

with zip format. Also a link to the specific result page, as described for a single query, will be 

given for each one of the sequences contained in the input fasta file. The content of the zip 

archive consists of the bed, fasta and xls file described above and a html file to visualize 

locally the results in a web browser. Note that for batch searches only a maximum of 50 off-

target sites will be considered, if you need the exahustive list of off-target sites you can later 

run a searach in single sequence mode with the target site of interest. 

5. Work Yourself on CCTop 

1. Visit: https://crispr.cos.uni-heidelberg.de/index.html 

https://crispr.cos.uni-heidelberg.de/index.html
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2. Add a query sequence 

For your convenience, let’s take the following example: 

 

>JF909299.1 Homo sapiens insulin (INS) mRNA, partial cds 

CTGGGGACCTGACCCAGCCGCAGCCTTTGTGAACCAACACCTGTGCGGCTCACACCTGGTGGAAGCTCTC 

TACCTAGTGTGCGGGGAACGAGGCTTCTTCTACACACCCAAGACCCGCCGGGAGGCAGAGGACCTGCAGG 

TGGGGCAGGTGGAGCTGGGCGGGGGCCCTGGTGCAGGCAGCCTGCAGCCCTTGGCCCTGGAGGGGTCCCT 

GCAGAAGCGTGGCATTGTGGAACAATGCTGTACCAGCATCTGCTCCCTCTACCAGCTGGAGAACTACTGC 

AACTA 
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Genome Wide Association Study (GWAS)-Statistical View Point 

 

A genome-wide association study is an approach that involves rapidly scanning markers across 

the complete sets of DNA, or genomes, of many subjects to find genetic variations associated 

with a particular trait. Once new genetic associations are identified, researchers can use the 

information to develop better strategies to detect and manage the trait. Such studies are 

particularly useful in finding genetic variations that contribute to common, complex traits. In 

other words, Genome Wide Association Studies (GWAS) is based on correlations between 

genetic markers (usually Single Nucleotide Polymorphisms, short SNPs) and any measurable 

trait in a population of individuals. The main motivation in identifications of these associations 

is to find out new candidates for causal variants in genes (or their regulatory elements) that 

play a role for the phenotype of interest. This may eventually lead to a better understanding of 

the genetic components of the trait. Current GWAS usually include the following steps: 

 Genotype calling from the raw chip-data and basic quality control. 

 Principle Component Analysis (PCA) to detect and possibly correct for population 

stratification. 

 Genotype imputation (using linkage disequilibrium information from HapMap). 

 Testing for association between a single SNP and continuous or categorical phenotypes. 

 Global significance analysis and correction for multiple testing. 

 Data presentation (e.g. using quantile-quantile and Manhattan plots). 

 Cross-replication and meta-analysis for integration of association data from multiple 

studies. 

It has been found that (meta-) studies with many thousands (and even ten-thousands) of 

samples could at best identify a few (dozen) candidate loci with highly significant associations.  

Although, these unknown associations have been replicated in independent studies, each locus 

explains but a tiny (<1%) fraction of the genetic variance of the phenotype. Number of reasons 

could be attributed to this fact. Some important reasons are as follows:  

 Estimation of heritability of trait from one generation to another is a problem especially 

for low heritable traits. 

 Often genotype information is incomplete. For example, most analyses used 

microarrays probing of fractions of SNPs, while many of these SNPs can be imputed 

accurately using information on linkage disequilibrium. There still remains a significant 

fraction of SNPs which are poorly tagged by the measured SNPs. Furthermore, rare 
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variants with a Minor Allele Frequency (MAF) of less than 1% are not accessed at all 

with SNP-chips, which may nevertheless be the causal agents for many phenotypes. 

Finally, other genetic variants like Copy Number Variations (CNVs) (or even 

epigenetics) may also play an important role. 

 Current analyses usually only employ additive models considering one SNP at a time 

with few co-variables and principle components reflecting population sub-structures. 

This obviously covers a small set of all possible interactions between genetic variants 

and the environment. Even more challenging task is taking into account purely genetic 

interactions, since already the number of all possible pair-wise interactions scales like 

the number of genetic markers squared. 

Micro satellites markers are generally used for finding association with a candidate gene or 

linked region of a chromosomes. This is due to the fact that linkage exists over a very broad 

region and entire chromosome can be divided only 400-800 DNA markers regions. This can 

be used for population/family based designs. Using SNPs are more appropriate in other cases 

but cost plays an important role in this case. 

Single Nucleotide Polymorphisms 

The modern unit of genetic variation is the Single Nucleotide Polymorphism or SNP. SNPs are 

single base-pair changes in the DNA sequence that occur with high frequency in a genome. For 

the purposes of genetic studies, SNPs are typically used as markers of a genomic region, with 

the large majority of them having hardly any impact on biological systems. SNPs can have 

functional consequences, however, causing amino acid changes, changes to mRNA transcript 

stability, and changes to transcription factor binding affinity. SNPs are by far the most abundant 

form of genetic variation in living organism. SNPs typically have two alleles, meaning within 

a population there are two commonly occurring base-pair possibilities for a SNP location. The 

frequency of a SNP is given in terms of the minor allele frequency or the frequency of the less 

common allele.  Rare SNPs i.e. SNPs with low frequency in the population are sometimes 

referred to as mutations though they can be structurally equivalent SNPs - single base-pair 

changes in the DNA sequence. In the genetics literature, the term SNP is generally applied 

common single base-pair changes, and the term mutation is applied to rare genetic variants. In 

is well known fact that common traits are likely to be influenced by genetic variation that is 

also common in the population.  Also, if common genetic variants influence the trait, the effect 

size for any one variant must be small relative to that found in rare trait. Therefore, the allele 

frequency and the population prevalence are completely correlated. However, if a SNP caused 

a small change in gene expression that has small effect, then the influential allele would be 

only slightly correlated.  Further, if common alleles have small genetic effects, but show 

heritability then multiple common alleles must influence disease susceptibility. These points 

suggest that traditional family-based genetic studies are not likely to be successful for complex 
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traits, prompting a shift toward population-based studies. The frequency with which an allele 

occurs in the population and the risk incurred by that allele for complex trait are key 

components to consider when planning a genetic study along with impact of  the technology 

needed to gather genetic information and the sample size needed to discover statistically 

significant genetic effects. Under these circumstances we need to go for GWAS. GWAS needs 

large sample sizes and a large panel of genetic markers technology to gather genetic 

information to discover statistically significant genetic effects.  

Linkage disequilibrium (LD) mapping of QTL exploits population level associations between 

markers and QTL.  These associations arise because there are small segments of chromosome 

in the current population which are descended from the same common ancestor.  These 

chromosome segments, which trace back to the same common ancestor without intervening 

recombination, will carry identical marker alleles or marker haplotypes, and if there is a QTL 

somewhere within the chromosome segment, they will also carry identical QTL alleles.  There 

are number of QTL mapping strategies which exploit LD, the simplest of these is the genome 

wide association test using single marker regression 

Genome Wide Association Study 

It refers to a method / methodology for interrogating large number of variable points across a 

genome. As these variations are inherited in groups, or blocks, not all   points have to be tested. 

It is an approach which involves rapidly scanning markers across the complete sets of DNA, 

or genomes of number of subjects to find genetic variations associated with a particular trait. 

Once new genetic associations are identified, researchers can use this information to develop 

better management strategies.  Genome-wide association studies were made possible by the 

availability of chip based microarray technology for assaying one million or more SNPs. Two 

primary platforms have been used for most GWAS i.e.  Illumina and Affymetrix.  The 

Affymetrix platform prints short DNA sequences as a spot on the chip that recognizes a specific 

SNP allele. Alleles (i.e. nucleotides) are detected by differential hybridization of the sample 

DNA. Illumina on the other hand uses a bead-based technology with slightly longer DNA 

sequences to detect alleles. The Illumina chips are more expensive to make but provide better 

specificity. It is important to note that the technology for measuring genomic variation 

changing rapidly. Chip-based genotyping platforms are being replaced over the years with 

inexpensive new technologies for sequencing the entire genome i.e. next-generation 

sequencing methods. There are two primary classes of phenotypes categorical i.e. binary 

(case/control) and quantitative. Statistically, quantitative traits are preferred because as they 

improve power to detect a genetic effect, and often have a more interpretable outcome.  The 

study design for this genetic association differs based on (i) scale of study i.e. genome wide 

based or genomics based,  (ii) marker design, which depends on selection of best marker i.e. 

microsatellite, SNP and CNV (iii) subject design i.e. based on candidate gene or genome wide 

screening approach.   
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The genome wide studies mainly classified in to three categories i.e. cohort studies, family 

based study and case-control studies. In case of cohort studies, the subjects are assumed to be 

representative of the population. The phenotypes are used to ascertain the similarity among 

these subjects irrespective of genetic variations. This technique directly measures the risk and 

also less biased then case control studies. But it requires long follow up with large sample size. 

It also very expensive and poorly suited for rare traits. In case of family based studies, the basic 

assumption is that families are representative of the population of interest and both parents are 

from same genetic background. The major advantage of this technique is that, it checks for 

Mendelian in heritance and less prone to spurious associations. In this case, parent phenotypes 

are not required. It also allows for investigation imprinting and simple logistics techniques are 

applicable to detect the association.  It is cost inefficient, with low power and very sensitive to 

genotyping errors. Third types of studies are known as case-control studies. In these studies, 

subjects are drawn from same population and cases represent all cases of the population. These 

are simple, cheap, and we can use large number of case and control variables. These are optimal 

for studying rare traits.  In this, results are prone to population stratification criterion. In this, 

batch effect and other biases plays a major role. Generally it gives over estimation for common 

traits. Mostly, GWAS are used in diseased studies. In case of disease studies, there are three 

types of diseases as follows: 

 Monogenic diseases: This is also a single gene produce disease. Often these disease 

are severe and appear early in life cycle. For the population as a whole, they are 

relatively rare. In a sense, these are pure genetic diseases. They do not require any 

environmental factors to elicit them. Although, nutrition is not involved in the 

causation of monogenic diseases, these diseases can have implications for nutrition. 

They reveal the effects of particular proteins or enzymes that also are influenced by 

nutritional factors.  

 Oligogenic diseases: These are conditions produced by the combination of two, three, 

or four defective genes. Often a defect in one gene is not enough to elicit a full-blown 

disease, but when it occurs in the presence of other moderate defects, a disease 

becomes clinically manifest. It is the expectation of human geneticists that many 

chronic diseases can be explained by the combination of defects in a few (major) genes. 

 Polygenic disease: This is third category of genetic disorder. According to the 

polygenic hypothesis, many mild defects in genes conspire to produce some chronic 

diseases. To date, the full genetic basis of polygenic diseases has not been worked out 

as multiple interacting defects are highly complex. 

In case of association analysis, we need to have selection of representative samples from the 

population of interest and complete and accurate genotype data set. Therefore, in this statistical 

analysis representative sample can be selected using appropriate sampling procedure 

depending on cost of experiments. However, missing values in genotypes is non-avoidable. 
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Therefore, we need to employ appropriate imputation techniques. Brief descriptions about 

these two techniques are given in subsequent paragraphs.  

Sampling Techniques 

The genesis of multiphase design for case control studies are from sample surveys. Initially, 

two phase sampling was introduced by Neyman (1938) as a technique for stratification. In this 

technique researcher needs to draw a Simple Random Sample from the target population and 

classify objects into homogeneous strata. Further, subsamples from each stratum are drawn and 

observations on variable are recorded only on these sub-samples drawn in the second phase. 

With judicious choice of strata and optimum sampling ratios, these designs are very cost 

efficient. The basic idea of these designs is to use information available on all subjects in the 

main study and draw more informative sub-samples for additional, more expensive, 

measurement and combining the information from both phases in the analysis. This concept 

for in Genome Wide Association Studies (GWAS) was introduced by Satagopan et. al. (2002),. 

Previously, this design has been cited in epidemiologic literature by White (1982). The basic 

goal of two phase design is to maximize the power to detect gene and disease association when 

the main design constraint is the total cost. Mainly, this total cost depends on number of gene 

evaluations rather than total number of individuals. Therefore, in the first phase, all the genes 

of our interest are evaluated on a sub-set of individuals. Later, most promising genes are 

evaluated on additional/same subjects in the second phase. This will eliminate the wastage of 

resources on genes, which are not likely to be associated with a particular trait. In this situation 

we find two types of cases i.e.  (i) when genes are co-related (ii) when genes are independent. 

Let us assume the unit cost per gene evaluation and let T denotes the total number of genetic 

evaluation or total cost. Let, in a genome, there are m genetic loci.  Consider very simple 

situation that out of these m gene only one gene is associated with the trait (disease) under 

consideration. Now our problem is to identify this true gene which is associated with our trait. 

Let there are N individuals which are available. In absence of any cost constraints the best way 

is to evaluate all m markers for all N subjects with a total cost of mN. The best way of testing 

association with the trait under this situation is making 2 X 2 table for each locus with presence 

or absence of trait as rows and alleles as columns then apply chi-square test for association. 

The target gene would be selected based on largest test statistics. Now let us assume a situation 

when T < mN,  then it is not possible to evaluate all m markers but only T/m individuals can 

be evaluated at first stage, but selection of T/m individuals should be in such that the possibility 

of  missing true gene associated with trait is minimum. Therefore, this design needs to be 

optimized for two stage selection. 

In this design, all m genes are evaluated on n1 individuals, where proportion of cases with trait 

and control remains the same as in the case of N individuals. After application of test statistics, 

rank them based on absolute value of test statistics. In the second stage, select top mi genes 
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where “i” is proportion of genes on sub-sequent subjects till cost is T through selection of same 

proportion of case and control subject as in the original population. Now, the problem boils 

down to determination of value n1 and i (ith proportion) so that it leads to maximum probability 

of selecting true gene i.e. maximum power P of the statistics. Then T = n1m + n2mi  where, n2 

is numbers of subjects at the second stage. Now our aim is to maximize P with respect to ni 

and i subject to fixed T and m. Since, T/ m= n1 + n2i = fixed, therefore, choosing n1 and i 

determines n2. In other word, optimization of power for two stage design can be seen 

equivalently, as determination of proportion of resources at the first stage i.e. j= n1m/T  and 

determination of proportion “i”  of the genes to be evaluated at the second stage. The proportion 

of total number of subject required for two stage design is given by j+(1-j)/i. 

In other words, P can be written as P1 * P2 under the assumption that mutational profiles of all 

genes are mutually uncorrelated. Hence, P1 is the probability that true gene is among top ith 

proportion in stage 1 and P2 is the probability that true gene has highest association among all 

null genes at stage-2. These probabilities can be calculated using statistical distributions (may 

be Gaussian approximation). In practice, the assumption of independent gene outcome may not 

be true within individual in case of testing multiple markers. These outcomes may be correlated 

due to various factors, such as genetic linkages and loss of heterozygosis, allele frequency, and 

marker density. The correlation due to recombination can be easily quantified and further these 

can be modelled through statistical distributions. Further these probabilities can be further 

evaluated using Mote Carlo simulation for different values of i, j and μ (mean). This design 

can be further extended for optimal design for more than one true gene. 

Genotype Imputation 

Identification and characterization of genetic variation of a species which affects its important 

traits are very important for increasing production and productivity in agriculture especially in 

the context of development of improved biotic and abiotic resistance breeds/varieties. The basic 

idea is that, data on a modest set of genetic variant measured in number of related subjects can 

provide useful information about other genetic variants in those subjects forms the theoretical 

under pinning of both genetic linkage mapping in pedigree and haplotype mapping in founder 

population. These studies typically used few markers to survey entire genome through 

identification of parts of chromosomes inherited from common ancestor. Earlier in genetic 

linkage and haplotype mapping, it was expected that long sketches of shared chromosome 

inherited from a relatively recent common ancestor. Sometimes, the focus of GWAS is on 

unrelated individuals and it expected to have small stretch on shared chromosome. Under these 

circumstances genotype imputation can use these short stretches of shared haplotype to 

estimate with great precision the effects of many variants that are not directly genotyped.  

There are two broad categories of genotype imputation. First, imputing missing genotype from 

information on close relatives and second, genotype imputation from distant relatives. If it is 
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known that the haplotype individuals carried at every point on the genome and SNP alleles are 

also known within each unique population haplotype then it is possible to impute genotypes 

which a individual carries for any SNP locus. Genotype imputation is important due to 

following reasons:- 

 In case of accurate SNP array technology also, large number of SNP genotype are 

missing which poses problems in genomic selection and GWAS. 

 Genotype imputation can be used to get high density genotype when subject has been 

genotyped with low density array. 

 It is quite useful for combining data sets genotyped from two different panels with 

sufficient overlap between panels. 

 Genotype imputation is applied to recover genotype from full genome sequence data. 

(i.e. from very dense SNP/insertion and deletion, CNV for genomic predictions and 

GWAS). 

 There are number of approaches/tools for imputing missing Genotypes such as PHASE 

(IMPUTE 1.0, IMPUTE 2.0) FastPHASE, MACH, BEAGLE etc. But PHASE and Fast 

PHASE are most widely used. In case of genotype imputation number of tools uses Hidden 

Marker Model (HMM) at the backend. These basic approaches relies that if it is known that a 

particular SNP alleles are associated with a particular hyplotype in a population then it is 

possible to infer or impute genotype carried by the individual of same hyplotype for which it 

is not known. In case of HMM, the hidden state generates true hyplotypes in the population for 

which genotypes are known. Then HMM can be used to estimate the probability that an 

individual carries a particular genotype at a particular locus given the genotype data for that 

individual at other locus and rest of the population. Basically it takes advantage of a reference 

population which is densely genotyped at all SNP. The methods of imputation differ in their 

assumptions about the hidden states, the way state transition probabilities are derived, emission 

probability and the initial state probabilities. 

Association Analysis 

The association analysis can be taken up with well-defined phenotype of a population, and 

genotypes data set which is collected using sound techniques. The preliminary analysis of 

genome-wide association data is a series of single-locus statistic tests, examining each SNP 

independently for association to the phenotype. The statistical test conducted depends on a 

variety of factors, but first and foremost, statistical tests are different for quantitative traits 

versus case/control studies. Quantitative traits are generally analysed using generalized linear 

model (GLM) approaches and most commonly the Analysis of Variance (ANOVA), which is 

similar to linear regression with a categorical predictor variable of genotype classes. The null 

hypothesis of an ANOVA using a single SNP is that there is no difference between the trait 
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means of any genotype group. The assumptions of GLM and ANOVA are that (i) the trait is 

normally distributed, (ii) the trait variance within each group is the same, and (iii) the groups 

are independent. Dichotomous case/control traits are generally analysed using either 

contingency table methods or logistic regression. Contingency table tests examine and measure 

the deviation from independence that is expected under the null hypothesis that there is no 

association between the phenotype and genotype classes using Chi-square test and related 

Fisher’s exact test.  Logistic regression is an extension of linear regression where the outcome 

of a linear model is transformed using a logistic function that predicts the probability of having 

case status given a genotype class. Logistic regression is often the preferred approach because 

it allows for adjustment for clinical covariates (and other factors), and can provide adjusted 

odds ratios as a measure of effect size. Logistic regression has been extensively developed, and 

numerous diagnostic procedures are available to aid interpretation of the model. For both 

quantitative and dichotomous trait analysis (regardless of the analysis method), there are a 

variety of ways that genotype data can be encoded or shaped for association tests. The choice 

of data encoding can have implications for the statistical power of a test, as the degrees of 

freedom for the test may change depending on the number of genotype-based groups that are 

formed. Allelic association tests examine the association between one allele of the SNP and 

the phenotype. Genotypic association tests examine the association between genotypes (or 

genotype classes) and the phenotype. The genotypes for a SNP can also be grouped into 

genotype classes or models, such as dominant, recessive, multiplicative, or additive models. 

Each model makes different assumptions about the genetic effect in the data by assuming two 

alleles for a SNP, A and a, a dominant model (for A) assumes that having one or more copies 

of the A allele increases risk compared to a (i.e. Aa or AA genotypes have higher risk). The 

recessive model (for A) assumes that two copies of the A allele are required to alter risk, so 

individuals with the AA genotype are compared to individuals with Aa and aa genotypes. The 

multiplicative model (for A) assumes that if there is 3 x risk for having a single A allele, there 

is a 9 x risk for having two copies of the A allele. In this case, if the risk for Aa is k, the risk 

for AA is k2. The additive model (for A) assumes that there is a uniform, linear increase in risk 

for each copy of the A allele, so if the risk is 3 x for Aa, there is a 6x risk for AA. In this case, 

the risk for Aa is k and the risk for AA is 2k. A common practice for GWAS is to examine 

additive models only, as the additive model has reasonable power to detect both additive and 

dominant effects, but it is important to note that an additive model may be underpowered to 

detect some recessive effects. Rather than choosing one model a priori, some studies evaluate 

multiple genetic models coupled with an appropriate correction for multiple testing. 
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Principal Component Analysis, Discriminant Analysis and Other 

Multivariate Statistical Techniques 
 

Multivariate data consist of observations on several different variables for a number of 

individuals or subjects. Data of this type arise in all the branches of science, ranging from 

psychology to biology, and methods of analyzing multivariate data constitute an increasingly 

important area of statistics.  Indeed, the vast majority of data in forestry is multivariate and 

proper handling of such data is highly essential. Principal components analysis (PCA) and 

Factor analysis (FA) are multivariate techniques applied to a single set of variables to 

discover which sets of variables in the set form coherent subsets that are relatively 

independent of one another.  The details of PCA and FA are discussed as below. 

Principal Components Analysis 

Most of the times the variables under study are highly correlated and as such they are 

effectively “saying the same thing”.  To examine the relationships among a set of p correlated 

variables, it may be useful to transform the original set of variables to a new set of 

uncorrelated variables called principal components.  These new variables are linear 

combinations of original variables and are derived in decreasing order of importance so that, 

for example, the first principal component accounts for as much as possible of the variation in 

the original data.   

Let x1, x2, x3, . . . ,xp are variables under study, then first principal component may be defined 

as  

 z1 = a11 x1 + a12 x2 + ...... + a1p xp 

such that  variance of z1 is as large as possible subject to the condition that  

 a11
2 + a12

2 + ..... + a1p
2 = 1 

This constraint is introduced because if this is not done, then Var(z1) can be increased simply 

by multiplying any a1js by a constant factor 

The second principal component is defined as  

  z2 = a21 x1 + a22 x2 + ....... + a2p xp  

such that Var(z2) is as large as possible next to Var( z1 )subject to the constraint that  

 a21
2 + a22

2 + ....... + a2p
2   =   1   and   cov(z1, z2) = 0 and so on. 

http://www.pfc.forestry.ca/profiles/wulder/mvstats/orthog_e.html
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It is quite likely that first few principal components account for most of the variability in the 

original data.  If so, these few principal components can then replace the initial p variables in 

subsequent analysis, thus, reducing the effective dimensionality of the problem.  An analysis 

of principal components often reveals relationships that were not previously suspected and 

thereby allows interpretation that would not ordinarily result. However, Principal Component 

Analysis is more of a means to an end rather than an end in itself because this frequently 

serves as intermediate steps in much larger investigations by reducing the dimensionality of 

the problem and providing easier interpretation. It is a mathematical technique which does 

not require user to specify the statistical model or assumption about distribution of original 

variates.  It may also be mentioned that principal components are artificial variables and often 

it is not possible to assign physical meaning to them. Further, since Principal Component 

Analysis transforms original set of variables to new set of uncorrelated variables, it is worth 

stressing that if original variables are uncorrelated, then there is no point in carrying out 

principal component analysis. 

Computation of principal components: 

Let us consider the following data on average minimum temperature (x1), average relative 

humidity at 8 hrs. (x2), average relative humidity at 14 hrs. (x3) and total rainfall in cm. (x4) 

pertaining to Raipur district from 1970 to 1986 for kharif season from 21st May to 7th Oct. 

X1 x2 x3 x4 

25.0 86 66 186.49 

24.9 84 66 124.34 

25.4 77 55  98.79 

24.4 82 62 118.88 

22.9 79 53  71.88 

7.7 86 60 111.96 

25.1 82 58  99.74 

24.9 83 63 115.20 

24.9 82 63 100.16 

24.9 78 56   62.38 

24.3 85 67 154.40 

24.6 79 61 112.71 

24.3 81 58  79.63 

24.6 81 61 125.59 

24.1 85 64   99.87 

24.5 84 63 143.56 

24.0 81 61 114.97 

Mean     23.56 82.06 61.00 112.97 

S.D.      4.13     2.75   3.97   30.06 
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with the variance co-variance matrix. 

       =  

17 02 4 12 154 514

7 56 8 50 54 82

15 75 92 95
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. .

.
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Find the Eigen values and eigen vectors of the above matrix.  Arrange the eigen values in 

decreasing order.  Let the eigen values in decreasing order and corresponding eigen vectors 

are  

1  =  916.902     a1  =  (0.006,     0.061,     0.103,     0.993) 

2  =    18.375     a2  =  (0.955,    -0.296,     0.011,     0.012) 

3  =      7.87       a3  =  (0.141,     0.485,     0.855,    -0.119) 

4  =      1.056     a4  =  (0.260,     0.820,    -0.509,     0.001) 

The principal components for this data will be 

 z1  =   0.006  x1 +  0.061 x2  +  0.103 x3 +  0.993 x4 

 z2  =   0.955 x1  -   0.296 x2 +  0.011 x3 +  0.012 x4 

 z3  =   0.141 x1 +   0.485 x2 +  0.855 x3  -  0.119 x4 

 z4  =   0.26   x1 +   0.82   x2  -  0.509 x3 +  0.001 x4 

The variance of principal components will be eigen values i.e.  

Var( z1 ) =   916.902,  Var( z2 )  =  18.375,  Var (z3 )  = 7.87, Var(z4 )  = 1.056 

The total variation explained by original variables is  

   = Var(x1) + Var(x2) + Var(x3) + Var(x4) 

   = 17.02 + 7.56 + 15.75 + 903.87  =  944.20 

The total variation explained by principal components is 

 1 + 2 + 3 + 4 = 916.902 + 18.375 + 7.87 + 1.056 = 944.20 

As such, it can be seen that the total variation explained by principal components is same as 

that explained by original variables.  It could also be proved mathematically as well as 

empirically that the principal components are uncorrelated. 

The proportion of total variation accounted for by the first principal component is 
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  1                              916.902 

 -------------------------    =     ------------   =   .97 

 1  +  2  + 3  +  4                944.203 

Continuing, the first two components account for a proportion  

         1 + 2                      935.277 

 -------------------------    =     ------------   =   .99 

 1  +  2  + 3  +  4              944.203 

of the total variance.    

Hence, in further analysis, the first or first two principal components z1 and z2 could replace 

four variables by sacrificing negligible information about the total variation in the system.  

The scores of principal components can be obtained by substituting the values of xi s in 

equations of zi s.  For above data, the first two principal components for first observation i.e. 

for year 1970 can be worked out as  

 z1 = 0.006 x 25.0 + 0.061 x 86 + 0.103 x 66 + 0.993 x 186.49 = 197.380 

 z2 = 0.955 x 25.0 - 0.296 x 86 + 0.011 x 66 + 0.012 x 186.49 = 1.383 

Similarly for the year 1971 

 z1  = 0.006 x 24.9 + 0.061 x 84 + 0.103 x 66 + 0.993 x 124.34 = 135.54 

 z2  = 0.955 x 24.9 - 0.296 x 84 + 0.011 x 66 + 0.012 x 124.34 =     1.134 

Thus the whole data with four variables can be converted to a new data set with two principal 

components. 

Note: The principal components depend on the scale of measurement, for example, if in the 

above example X1 is measured in 0F instead of  0C and X4 in mm in place of cm, the data 

gives different principal components when transformed to original x’s.  In very specific 

situations results are same.  The conventional way of getting around this problem is to use 

standardized variables with unit variances, i.e., correlation matrix in place of dispersion 

matrix. But the principal components obtained from original variables as such and from 

correlation matrix will not be same and they may not explain the same proportion of variance 

in the system.  Further more, one set of principal components is not simple function of the 

other. When the variables are standardized, the resulting variables contribute almost equally 

to the principal components determined from correlation matrix. Variables should probably 

be standardized if they are measured on scales with widely differing ranges or if measured 

units are not commensurate.  Often population dispersion matrix or correlation matrix are not 

available.  In such situations sample dispersion matrix or correlation matrix can be used. 
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Applications of principal components: 

 The most important use of principal component analysis is reduction of data.  It 

provides the effective dimensionality of the data.  If first few components account for 

most of the variation in the original data, then first few components’ scores can be 

utilized in subsequent analysis in place of original variables. 

 Plotting of data becomes difficult with more than three variables.  Through principal 

component analysis, it is often possible to account for most of the variability in the 

data by first two components, and it is possible to plot the values of first two 

components scores for each individual.  Thus, principal component analysis enables 

us to plot the data in two dimensions. Particularly detection of outliers or clustering of 

individuals will be easier through this technique.  Often, use of principal component 

analysis reveals grouping of variables which would not be found by other means. 

 Reduction in dimensionality can also help in analysis where no. of variables is more 

than the number of observations, for example, in discriminant analysis and regression 

analysis.  In such cases, principal component analysis is helpful by reducing the 

dimensionality of data. 

 Multiple regression can be dangerous if independent variables are highly correlated.  

Principal component analysis is the most practical technique to solve the problem.  

Regression analysis can be carried out using principal components as regressors in 

place of original variables.  This is known as principal component regression.  

Discriminant Analysis 

Discriminant analysis and classification are multivariate techniques concerned with 

separating distinct sets of objects (or observations) and with allocating new objects 

(observations) to previously defined groups.  Discriminant analysis is rather exploratory in 

nature.  As a separatory procedure, it is often employed on a one - time basis in order to 

investigate observed differences when causal relationships are not well understood.  

Classification procedures are less explanatory in the sense that they lead to well- defined 

rules, which can be used for assigning new objects.  Classification ordinarily requires more 

problem structure than discrimination. 

Thus, the immediate goals of discrimination and classification, respectively, are as follows. 

Goal 1. To describe either graphically (in three or lower dimensions) or algebraically, the 

differential features of objects (observations) from several known collections (populations).  

We try to find “discriminants” whose numerical values are such that the collections are 

separated as much as possible. 
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Goal 2.  To sort objects (observations) into two or more labeled classes.  The emphasis is on 

deriving a rule that can be used to optimally assign a new object to the labeled classes. 

We shall follow convention and use the term discrimination to refer to Goal 1.  This 

terminology was introduced by R.A. Fisher in the first modern treatment of separatory 

problems.  A more descriptive term for this goal, however, is separation, we shall refer to the 

second goal as classification, or allocation. 

A function that separates may sometimes serve as an allocation, and conversely, an allocatory 

rule may suggest a discriminatory procedure.  In practice, Goals 1 and 2 frequently overlap 

and the distinction between separation and allocation becomes blurred.   

Here we discuss Fisher’s linear discriminant function for two multivariate populations having 

same dispersion matrix.  For more general cases readers are requested to go through the 

references cited at the end. 

Fisher’s Discriminant Function 

Here Fisher’s idea was to transform the multivariate observations x to univariate observations 

y such that the y’s derived from populations 1 and 2 were separated as much as possible.  

Fisher’s approach assumes that the populations are normal and also assumes the population 

covariance matrices are equal because a pooled estimate of common covariance matrix is 

used. 

A fixed linear combination of the x’s takes the values y11, y12, ..., y1n1, for the observations 

from the first population and the values y21, y22, ..., y2n2, for the observations from the second 

population.  The separation of these two sets of univariate y’s is assessed in terms of the 

differences between y1 and y2  expressed in standard deviation units.  That is, 

separation = 
y y

sy

1 2
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y y y y
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is the pooled estimate of the variance.  The objective is to select the linear combination of the 

x to achieve maximum separation of the sample means y1 and y2 . 

Result:  The linear combination y =  ( )   
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overall possible coefficient vectors l  where d x x1 2 ( ).  The maximum of the above 

ratio is D s2    ( ) ( )x x x x1 2 pooled
1

1 2 , the Mahalanobis distance. 

Fisher’s solution to the separation problem can also be used to classify new observations.  An 

allocation rule is as follows. 

Allocate x0 to 1 if 

y0 =  ( )x x x1 2 pooled
1
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and to 2 if  

 y0  m  

If we assume the populations 1 and 2 are multivariate normal with a common covariance 

matrix, then a test of H0: 1 = 2 versus H1: 1  2 are accomplished by referring  
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to an F-distribution with 1 = p and 2 = n n p1 2 1    d.f.   If H0 is rejected, we can 

conclude the separation between the two populations is significant. 

Example: 

To construct a procedure for detecting potential hemophilia ‘A’ carriers, blood samples were 

analyzed for two groups of women and measurements on the two variables, x1 = log10(AHF 

activity) and x2 = loh10(AHF-like antigens) recorded.  The first group of n1 = 30 women were 

selected from a population who do not carry hemophilia gene (normal group).  The second 

group of n2 = 22 women were selected from known hemophilia ‘A’ carriers (obligatory 

group).  The mean vectors and sample covariance matrix are given as  
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Now the linear discriminant function is 

y0 = l x0 = ( )x x S x1 2 pooled
1
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and the mid-point between these means is  

 ( ) ( )m s   1

2
x x x x1 2 pooled

1
1 2 = 

1

2
( y1 + y2 ) = -4.61 

Now to classify a women who may be a hemophilia ‘A’ carrier with x1 = -.210 and x2 = -

0.044, we calculate 

y0 = l x0 = 37.61x1 - 28.92 x2 = -6.62 

Since y0  m  we classify the women in 2 population, i.e., to obligatory carrier group. 

Correspondence Analysis 

The past decade has seen tremendous growth in the availability of both computer hardware 

and statistical software. As a result, the use of multivariate statistical techniques has increased 

to include most fields of scientific research and many areas of business and public 

management. In both research and management domains there is increasing recognition of 

the need to analyze data in a manner that takes into account the interrelationships among 

variables. Variables can be classified as being quantitative or qualitative. A quantitative 

variable is the one in which the variates differ in magnitude, for example, income, age and 

weight. A qualitative variable is one in which the variates differ in kind rather than in 

magnitude, for example, marital status, sex, nationality and hair colour. Obtaining values for 

quantitative variables involves measurement along a scale and unit of measure.  A unit of 

measure may be infinitely divisible (for example, kilometers, meters, etc.) or indivisible (for 

example, family size.). When the units of measure are infinitely divisible the variable is said 

to be continuous. In the case of an indivisible of unit of measure the variable is said to be 

discrete.   
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Scales of measurement can also be classified on the basis of the relations among the elements 

composing the scale. For example, an ordinal scale is the one in which the elements along the 

scale can be ordered from low to high.  A nominal scale corresponds to qualitative data. An 

example would be the variable marital status which has the categories married, single, 

divorced, widowed and separated. The five categories can be assigned coded values such as 

1, 2, 3, 4, or 5.  Although these coded values are numerical, they must not be treated as 

quantitative. On occasion, quantitative variables are treated in an analysis as if they were 

nominal. In general, we use the term categorical to denote a variable that is used as if it was 

nominal. The variable age for example can be divided into 6 levels and coded 1, 2, 3, 4, 5, 

and 6.  Principal component analysis and Factor analysis are primarily designed for analysis 

of data on continuous variables, whereas correspondence analysis is designed for categorical 

data.  Before going in detail for correspondence analysis, we explain few terms that are 

commonly used in it. 

Two-Dimensional Contingency Tables: In the event, a sample of n observations is 

simultaneously cross-classified with respect to the two categorical random variables (X, Y) 

the joint frequencies can be summarized in a table called two-dimensional contingency table.   

 Y 

 

 

 

X 

 1 2 3 … c Total 

1 f11 f12 f13 … f1c f1. 

2 f21 f22 f23 … f2c f2. 

3 f31 f32 f33 … f3c f3. 

. 

. 

. 

      

R fr1 fr2 fr3 … frc fr. 

Total f.1 f.2 f.3 … f.c 1.00 

The random variable X is assumed to have a range of values consisting of r categories, 

whereas the variable Y is assumed to have c categories. The cell density or joint density for 

cell (i, j) is denoted by fij, i = 1, 2, …, r; j= 1, 2, …, c; where it is understood that the first 

subscript refers to the row and the second subscript to the column. The marginal densities are 

denoted by fi. and f.j for the row and column variables respectively.  The conditional densities 

for the rows given column j will be denoted by fi.(i|j) and for the columns given row i by f.j 

(j|i). 

Row and column proportions  

The conditional densities f.j (j|i) are often referred to as row proportions, and the marginal 

density f.j is called the column total proportions. In a similar fashion the conditional densities 

fi.(i|j) are often referred to as column proportions, and the marginal density fi.is called the row 

total proportions. 
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Row and column profiles: 

The row and column proportions are also commonly referred to as row and column profiles.  

The term profile is often used in connection with the graphical displays of relationships in a 

contingency table. 

Singular value decomposition (SVD): A real (n × p) matrix A of rank k can be expressed as 

the product of three matrices that have a useful interpretation.  This decomposition of A is 

referred to as a singular value decomposition and is given by 

A = UDV' 

where  

1. D (k × k) is a diagonal matrix with positive diagonal elements k ,,, 21  , which 

are called the singular values of A, (without loss of generality we assume that the j , 

j = 1, 2, …, k, are arranged in descending order). 

2. The k columns of U (n  × k), u1, u2, …, uk, are called the left singular vectors of A 

and the k columns of V (p × k),  v1, v2, …, vk, are called the right singular vectors of 

A 

3. The matrix A can be written as the sum of k matrices, each with rank 1, A = 





k

1j

jjj vu .  The subtraction of any one of these terms from the sum results in a 

singular matrix for the remainder of the sum. 

4. The matrices U (n  × k), and V (p × k) have the property that U'U =  VV' = I; hence 

the columns of U form an orthonormal basis for the columns of A in n-dimensional 

space and the columns of V form an orthonormal basis for the rows of A in p-

dimensional space. 

5. Let A(l) denote the first l terms of the singular value decomposition for A; hence A(l) 

= 



l

1j

jjj vu . This expression minimizes tr[(A – X) (A – X)'] =  


 


n

1i

p

1j

2

ijij )xa( among all (n × p) matrices X of rank l.  Thus the singular value 

decomposition can be used to provide a matrix approximation to A. 

Biplots: A biplot is used to provide a two-dimensional representation for a data matrix X. 

Only two dimensions are usually employed to keep the presentation simple.  It is assumed 

that a singular value decomposition approximation for X based on r = 2 dimensions is 

adequate.  This of course should be evaluated by examining the magnitudes of the singular 
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values beyond r = 2.  The sum of these remaining residual singular values should ideally 

represent only a small proportion of trD. 

A singular value decomposition approximation for X based on two-dimensions is given by 

111 VDUX ˆ , where the rows of 1V  (2 × p) are the eigen vectors of X'X and the columns of 

1U (n × 2) are the eigen vectors of XX'. There are several ways of employing the three 

elements of the right hand side of the equation for X̂ . The most common form which is 

called the principal components plot. 

Correspondence analysis is a technique that uses singular value decomposition to analyze a 

matrix of nonnegative data.  The technique simultaneously characterizes the relationship 

among the rows and also among the columns of the data matrix.  The outcome of a 

correspondence analysis is a pair of bivariate plots.  One bivariate plot is based on the first 

two principal axes derived from the row profiles, and the second plot is based on the first two 

principal axes obtained from the column profiles.  Points representing the row categories are 

plotted using the row principal axes and points representing the column categories are plotted 

using the column principal axes.  The spatial relationships among the two sets of categories 

can then be studied using the two bivariate plots.  By using the same pair of axes to denote 

both pairs of principal axes the two bivariate plots can be superimposed on one another.  

With both plots appearing on the same axes the spatial relationship between the row 

categories and column categories can also be related. The SAS computer software procedure 

CORRESP will be used throughout this section to perform the necessary data analysis. 

Table 1: Correspondence matrix of observed cell densities for an (rc) contingency 

table 

 1 2 3  C Row Masses  

1 O11 O12 O13  O1c O1. 

2 O21 O22 O23  O2c O2. 

3 O31 O32 O33  O3c O3. 

       

r Or1 Or2 Or3  orc Or. 

Column Masses  O.1 O.2 O.3  O.c 1 

Correspondence analysis for two-dimensional contingency tables 

Correspondence analysis can be used to study interaction in a two-dimensional contingency 

table.  Table 1 shows the observed cell proportions or cell densities.  Let us denote the cell 

density for cell (i,j) as Oij=nij/n, where nij denotes the sample frequency in cell (i,j); i = 1,2, 

…, r and j = 1,2, …, c.  The row and column marginal densities are given by Oi. = ni./n and 
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O.j=n.j/n respectively where ni. and n.j are the row and column marginal frequencies 

respectively. 

Example: The data given in Table 2 pertains to the student-run legal advice service for the 

poor.  This table examines the relationship between the type of criminal charge and the 

eventual outcome of the case for both males and females. 

Table 2. Contingency Table for Criminal Charge Data 

Charge 

                   ______________________________________________________________ 

Convicted    Sex    Impaired     Theft Under    Mischief     Possession     other       Totals 

         Driving        $ 1000           of Narcotics 

No        Male 8  11  5  7 12 43 

        Female 5  15  3  1   6 30 

Yes             Male     105                      32           11            23          37      208 

        Female    32                      57                    6   2 25 122 

Totals   150  115  25  33 80 403 

 

Table 3. Correspondence Matrix for Criminal Charge Data 

________________________________________________________________________ 

Convicted    Sex    Impaired     Theft Under    Mischief     Possession     other       Totals 

         Driving        $ 1000           of Narcotics 

No        Male 2.0  2.7       1.2      1.7             3.0    10.7 

        Female 1.2  3.7       0.7      0.2             1.5      7.4 

Yes             Male       26.1                   7.9       2.7                 5.7               9.2          51.6 

        Female      7.9                 14.1            1.5      0.5             6.2    30.3 

Column Mass  37.2           28.6       6.2                  8.1             19.9    100.0 

The corresponding matrix of cell densities and row and column marginal densities are shown 

in Table 3.  The numbers are given as percentages and hence represent 100 Oij.The column of 

row masses on the right presents the row marginals as percents 100 Oi., and the row of 

column masses (last row) displays the column marginals, 100 O.j.  The majority of the clients 

were convicted males and 30.3% of the samples were convicted females.  The two most 

common offences were impaired driving (37.2%) and theft under $1000 (28.6%).  The most 
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common offence for males was impaired driving (28.1% of the sample) and the most 

common female offence was theft under $1000 (17.8% of the sample). 

Correspondence Matrix and Row and Column Masses 

The (rc) matrix of cell densities as shown in Table 1 is denotes by O and is called the 

Correspondence Matrix.  The (r1) vector of row marginals Oi., i =1,2…,r, is denoted by r 

and similarly the (c1) vector of column marginals O.j, j=1,2…,c, is denoted by c.  These 

row and column marginal vectors can be written as r = Oec and c = O’er where ec(c1) and 

er (r1) are vectors of unities.  The vectors r and c are also referred to respectively as row 

and column Masses.  Diagonal matrices constructed from the row and  

Table  4. Matrix R for Row Profiles 

 Columns  

1 2 3 … c Totals 

 

 

 

 

 

Rows 

1 n11/n1. n12/n1. n13/n1. … n1c/n1. 1 

2 n21/n2. n22/n2. n33/n2. … n2c/n2. 1 

3 n31/n3. n32/n3. n33/n3. … n3c/n3 1 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

R nr1/nr. nr2/nr. nr3/nr. … nrc/nr. 1 

Column  

Mass  

n.1/n n.2/n n.3/n … n.c/n 1 

column masses are denoted by  Dr (r r) and Dc (cc) respectively. The diagonal elements of 

Dr are the elements of r and the diagonal elements of Dc are the elements of c. 

Row and Column Profiles 

Beginning with the table of cell frequencies nij for each row i, the (c1) vector of row 

conditional densities is determined from nij/ni., j=1,2,…, c, and is denoted by ri.  These row 

conditional densities are called row profiles. The complete set of r row profiles will be 

denoted by the (rc) matrix R with rows given by ri., i =1,2,…,r.  Similarly the vector of 

column conditional densities nij/n.j, i=1,2…,r, for column j is denoted by the (r1) vector cj, j 

= 1,2, …,c.  The matrices R and C are illustrated in Tables 4 and 5 respectively.  These row 

and column profile matrices are useful to judge the departure from independence.  For the 

criminal charge data the row profile matrix R and the column profile matrix C are 

summarized in Tables 6 and 7.  The row profiles in Table 6.  
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Table 5. Matrix C for Column Profiles 

 Columns  

1 2 3 … C Row Mass 

 

 

 

 

 

Rows 

1 n11/n.1 n12/n.1 n13/n.1 … n1c/n.c N1./n 

2 n21/n.2 n22/n.2 n33/n.2 … n2c/n.c N2./n 

3 n31/n.3 n32/n.3 n33/n.3 … n3c/n.c N3./n 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

R nr1/n.1 nr2/n.2 nr3/n.3 … nrc/n.c nr./n 

Totals  1 1 1 … 1 1 

compare the four sex/conviction categories.  The tow female profiles (no and yes) are quite 

similar to each other, but the two male profiles are different from each other. For the column 

profiles in Table 7 the impaired driving and possession of narcotics profiles are similar to 

each other.  Also the mischief and other profiles are similar.  The profile for the theft under 

$1000 is quite different from the other four column profiles. Since theft under $1000 is the 

only offence dominated by females we shall see that this provides a partial explanation for 

this different column profile. 

Table 6. Row Profiles for Criminal Charge Data 

Charge 

             _________________________________________________________ 

Convicted    Sex    Impaired     Theft Under    Mischief     Possession     other       Totals 

         Driving        $ 1000           of Narcotics 

No        Male 0.186       0.256     0.116 0.163       0.279 1.000 

        Female 0.167       0.500     0.100 0.033       0.200 1.000 

Yes             Male      0.505         0.154             0.053 0.111         0.178         1.000 

        Female     0.262       0.467     0.049 0.016       0.205 1.000 

Column Mass              0.372         0.286             0.062 0.081       0.199 1.000 

 

Table 7. Column Profiles for Criminal Charge Data 

                 Charge 

      _________________________________________________________ 

Convicted    Sex    Impaired     Theft Under    Mischief     Possession     other       Row  

         Driving        $ 1000           of Narcotics                  Mass 

No        Male 0.053       0.096 0.200           0.212            0.150    0.107 

        Female 0.033       0.130 0.120           0.030            0.075    0.074 

Yes             Male         0.700         0.278         0.440           0.697            0.463           0.516     

        Female      0.214        0.496          0.240            0.061         0.312    0.303             

             1.000       1.000 1.000             1.000              1.000         1.000 
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Departure from Independence 

The purpose of correspondence analysis in the study of contingency tables is usually to study 

the departure of the observed cell frequencies from the cell frequencies expected under 

independence.  Although it is possible to compare the observed cell frequencies from other 

models, the independence model is the most commonly used base for comparisons.  Under 

the independence assumption, the theoretical row profiles for each row should be equal to the 

column marginals and equivalently the true column profiles for each column should be equal 

to the row marginals.   

Table 8. Row profile deviation from independence 

Charge 

Convicted Sex Impaired 

driving 

Theft under 

$1000 

Mischief Possession of 

Narcotics 

Other 

No Male -0.186 -0.030 0.054 0.082 0.080 

Female -0.205 0.314 0.038 -0.048 0.001 

Yes Male 0.133 -0.132 -0.009 0.030 -0.021 

Female -0.110 0.181 -0.013 -0.065 0.006 

 

Table 9. Column profile deviation from independence 

Charge 

Convicted Sex Impaired 

driving 

Theft under 

$1000 

Mischief Possession of 

Narcotics 

Other 

No Male -0.054 -0.011 0.093 0.105 0.043 

Female -0.041 0.056 0.046 -0.044 0.001 

Yes Male 0.284 -0.238 -0.076 0.181 -0.053 

Female -0.089 0.193 -0.063 -0.242 0.009 

For the sample correspondence matrix therefore the matrix differences (R-erc’) and (C-re’c) 

measure the degree of departure or deviation from independence in the sample (Tables 8 and 

9). Equivalently, under independence the cross product of the sample row and column 

marginal vectors or masses should be approximately equal to the correspondence matrix O of 

observed cell densities.  The matrix difference (O-rc’) is also therefore a measure of the 

deviation from independence. 
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Pearson Chi-Square Statistic and Total Inertia:  The Pearson Chi-Square Statistic for 

testing independence is given as  
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The above versions of the Pearson Chi-Square Statistic can also be expressed as  

    



r

1i
ii.i

2 )()(nG crDcr
1

c  

or     



c

1j
jrjj.

2 )()(nG rCDrC
1 . 

The statistic G2 / n is called the total inertia. Further, it can be viewed as a measure of the 

magnitude of the total row squared deviations or equivalently the magnitude of the column 

squared deviations.  Total inertia can also be expressed in the form  

   Tr[ )()( cr  
crODcrOD

11 ] 

Table 10:  Contribution to Chi-Square statistic for criminal charge data 

Charge 

Convicted Sex Impaired 

driving 

Theft 

under 

$1000 

Mischief Possession of 

Narcotics 

Other Totals 

No Male 4.00 0.13 2.04 3.44 1.41 11.02 

Female 3.41 4.84 0.70 0.86 0.00 9.81 

Yes Male 9.83 12.61 0.28 2.09 0.44 25.25 

Female 3.96 14.14 0.32 6.39 0.03 24.84 

Totals  21.20 31.72 3.34 12.78 1.88 70.92 
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Table 10 shows the cell contributions to the total Chi-square statistic. 

Coordinates of row and column profiles: For the singular value decomposition of (O - rc) 

given by ADB the columns of matrices A and B provide the principal axes for the columns 

and rows of (O - rc) respectively.  Each row of (O - rc) can be expressed as a linear 

combination of the rows of B (columns of B), and hence the coordinates for the rows of (O - 

rc) in the space generated by the rows of B are given by the AD.  The coordinates for the 

ith row of (O - rc) are given by the ith row of AD.  Similarly the coordinates for the 

columns of (O - rc) with respect to the space generated by the columns of A are provide by 

the columns of DB.   

To obtain the coordinates for the row and column profile deviations, the relationships 

   (R – erc) = )(r crOD 1   

and       (C – rec) = )(c crOD
1   

can be used. The required coordinates for the row and column profile deviations are therefore 

given by 

V (r × k) = 


ADD
1

r  = )(r crOD 1  BD
1

c  

and 

W (c × k) = 


BDD
1

c  = )(c 
crOD

1
AD 1

r  

respectively.  

The coordinates for row profiles on row principal axes and coordinates for column profiles on 

column principal axes are given in Tables 11 and 12.   

Table 11: Coordinates for row profiles on row principal axes 

 Row principal axes (columns of B) 

1 2 3 … K 

 

 

 

 

 

Rows 

1 v11 v12 v13 … v1k 

2 v21 v22 v23 … v2k 

3 v31 v32 v33 … v3k 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

r vr1 vr2 vr3 … vrk 
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Table 12. Coordinates for column profiles on column principal axes 

 Column principal axes (columns of A) 

1 2 3 … K 

 

 

 

 

Rows 

1 w11 w12 w13 … w1k 

2 w21 w22 w23 … w2k 

3 w31 w32 w33 … w3k 

 

 

 

 

 

 

 

 

  

 

c wc1 wc2 wc3 … wck 

For the criminal charge data the coordinates for the row and column profile deviations on 

their respective dimensions are shown in Tables 13 and 14. For the row profiles it would 

appear that the first dimension reflects a contrast between females charged and males 

convicted.  The second row dimension is primarily a measure of males charged but not. 

Table 13. Coordinates for row profiles on row principal axes for criminal charge data 

Row Profile Principal axes 

1 2 3 

No Males 0.04 0.50 -0.03 

No Females 0.55 0.09 0.11 

Yes Males -0.35 -0.05 0.01 

Yes Females 0.44 -0.11 -0.03 

Table 14. Coordinates for column profiles on column principal axes for criminal charge data 

Column Profile Principal axes 

1 2 3 

Impaired driving -0.34 -0.16 0.01 

Theft under $1000 0.52 -0.06 0.00 

Mischief 0.08 0.34 0.11 

Possession of Narcotics -0.50 0.37 -0.01 

Other 0.07 0.13 -0.05 
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convicted. For the column profiles the first dimension represents a contrast between the theft 

under $1000 and the crimes of narcotics possession and impaired driving. The second 

dimension for the column profile deviations seems to reflect a contrast between the three 

charges mischief, narcotics possession and other offences with the charge impaired. 

Factor Analysis 

Factor analysis is a data reduction technique, which often requires large sample size to have a 

valid interpretation. The basic idea in factor analysis is that a large number of explanatory 

variables having similar type of responses can be captured with a single latent variable that 

cannot be measured directly. For example, the latent variable (or factor) socioeconomic status 

is associated with the observed variables income, education, health status, occupation, on 

which the peoples’ responses are of similar type.  

In factor analysis, the number of factors is same as the number of variables, where each factor 

captures a certain amount of variation of all the variations present in the observed variables. 

The factors are always arranged in the decreasing order of their variances. In factor analysis, 

one expects three outputs viz., common factor variances, factor loadings and factor scores. 

The common factor variance is the measure of the amount variation explained by a factor 

present in the observed variables. Factor loading measures the underlying relationship that an 

observed variable have with a factor. The factor scores are the transformed data, commonly 

the weighted sum/mean of the observed variables (or manifest variables). 

The factor scores are not the penultimate output rather than act as an intermediate step 

(dimensionality reduction) for carrying out further statistical analysis, a much important one.  

In other words, factor scores enable user to use a single variable, instead of set of variables, 

as a measure of the factor in the other statistical investigation. For example, in case of linear 

model or mixed model, the factor scores can be used as variable (fixed factors or random 

factors), but here it refers to the categorical independent variable. Further, technically the 

factor scores are continuous and hence can be used as covariates in the model rather than as 

factors.  

Type of Factor Analysis 

There are two types of factor analysis, one is Exploratory Factor Analysis (EFA) and other is 

Confirmatory Factor Analysis (CFA). In CFA, one assumption is that there should be prior 

information about the number of factors likely to be encountered as well as which variables 

will be loaded onto which factors. On the other hand, CFA allows the researchers to test the 

hypothesis that whether the relationship between a variable and the underlying factor exits or 

not. Initially, the researcher postulates a certain a priori relationship pattern based on existing 

knowledge i.e., published research (empirical and/or theoretical) and then test the hypothesis 
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statistically. In EFA, the researcher tries to find out the number of underlying constructs 

(factors) without having any a priori information about the number of factors. In other words, 

in EFA, the number of factors is determined on the basis of the dataset supplied by the user, 

and also depends upon user interpretation. Linking these two approaches, one can use EFA 

first to explore the underlying factors and then perform CFA to validate the structure of 

factors in a new dataset that has not been used for performing EFA. For example, a factor 

“depression” can be obtained with underlying variables depressed mood, fatigue, exhaustion 

and social dysfunction through EFA for a sample of rural women, and then the CFA can be 

used to validate this factor using a sample of urban women. In EFA, the cut-off of loading are 

much relaxed than that of CFA. In other words, a variable having loading value <|0.7| is 

disqualified from its loading onto a certain factor (Thumb rule). Generally, the EFA is most 

commonly used in day-to-day life than that of CFA. So, in this study material we only 

focused on EFA. 

Exploratory Factor Analysis (EFA) 

Before carrying out factor analysis, some important points need to be considered. At first, the 

reliability of the dataset should be checked for factor analysis. In other words, for factor 

analysis, the values of the variables should be in interval scale, each variable should be 

normally distributed, pairs of variables should follow bi-variate normal distribution and the 

dataset as a whole should follow multivariate normal distribution. Further, the sample size 

should be large. Field (2000) suggested 10-15 observations per variable. Habing (2003) state 

that there should be at least 50 observations and the number of observations should be at least 

5 times as many variables. Comrey (1973) categorized the sample size for its suitability to 

factor analysis i.e., 100 as poor, 200 as fair, 300 as good, 500 as very good, and 1000 or more 

as excellent. Also, one can conduct Kaiser-Meyer-Olkin (KMO) test to check the sample 

adequacy. The sample is said to be adequate if KMO value is more than 0.5.  

As far as correlation matrix is concerned, the observed variables should be linearly related 

but not highly correlated that may lead to the matrix as singular and create difficulty in 

determining the unique contribution of the variables to the factors. To check the correlation 

among variables, one can use Bartlett’s test of spherity to test the null hypothesis that the 

correlation matrix is a identity matrix and the result should come out as significant. After 

rejecting the null hypothesis, one can validate the presence of multi-collinearity via the 

determinant of the correlation matrix i.e., if the determinant is greater than 0.00001, then 

there is no multi-collinearity (Field, 2000).  

After getting correlation matrix, it is essential to determine whether factor analysis (FA) or 

principal component analysis (PCA) is to be performed. The main difference between these 

two lies on the way the eigen values are used. In PCA, all the diagonal elements of the 

correlation matrix are 1 and all the variance present in the dataset are accounted by the 
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components. However, in FA, the diagonal of the correlation matrix are squared multiple 

correlation coefficient, which is further used to get the eigen values and thereby the factor 

scores. Also, all the variances are not accounted by the factors as there is also an error 

variance. Further, in PCA the sum of square of the factor loadings of a variable provided the 

variance accounted for by that variable, which is not same in FA as it is assumed that the 

variables do not account for 100% of the variance. Theoretically, FA is more correct than 

PCA (Field, 2000) but practically there is little difference and is further decreased with 

decrease in the number of variables and increase in the value of factor loadings (Rietveld and 

Van Hout, 1993). 

In conducting FA, one of the most important questions is the number of factors to be retained 

in the model. In PCA, the number of components is same as the number of positive eigen 

value. However eigen values are sometime positive and close to zero, and in that situation 

deciding the number of factor is difficult. In literature certain thumb rules are there to take 

decision about the number of factors. Guttman-Kaiser rule state that the factor with eigen 

value >1 should be retained in the model. Hair et al, (1995) stated that in the natural sciences 

the number factors retained in the model should explain at least 95% of the total variance 

present in the observed variables. In humanities, the number factors that can explain up to 60-

70% variation may be retained in the model (Hair et al, 1995; Pett et al, 2003). Besides, 

another option is that first draw a scree plot (Cattell, 1966) and retained all those factors 

appeared before reaching the point of inflection.   

After extracting the factors, the next task is to name the factors and interpret them. Since, 

most variable have higher value of loading on the most important factors and less amount of 

loadings on the remaining factors, it is always a difficult task to interpret about the factors. 

However, the factor rotation can help in this respect to a large extent. Factor rotation 

transforms the original loadings and thereby the interpretation becomes easier. Rotation 

maximizes the high loading items and minimizes the less loading items. There are two 

rotation techniques viz., orthogonal/ varimax and oblique/promax that are commonly used in 

factor analysis. Varimax rotation (Thomson, 2004) is the most common rotational technique 

used in factor analysis that produces uncorrelated factors. On the other hand, in oblique 

rotation, the factors are correlated. Often, the oblique rotation provides more accurate results 

when the data does not meet the prior assumptions. Further, to decide the type of rotation 

technique is almost difficult and therefore first carryout the analysis with oblique rotaions, 

and if the oblique rotation demonstrates a negligible correlation between the extracted factors 

then it is reasonable to use orthogonally rotated factors (Field, 2000). Regardless of the 

rotation techniques uses, the objective is to provide easier interpretation of the rrsults. 

Interpretation of EFA is nothing but to determine which variables are attributed to a factor 

and labeling of that factor. However, the labeling of a factor is a subjective process (Henson 
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and Roberts, 2006), where the meaningful of the factor is dependent on the researchers 

definition. Moreover, through and systematic factor analysis is nothing but to find those 

factors that together explain the majority of the responses. 

Mathematical aspects of EFA 

Consider a dataset with n observations and p standardized variables 1 2, ,..., px x x . Then, in EFA 

the observed variables are expressed as the linear combination of the common factors and 

unique factor i.e., 
1 1 2 2 3 3 ...i i i i ik k ix a F a F a F a F e      , where i=1,2,…, p, k<p and aik is the 

factor loading of ith variable on kth factor which is not same as that of eigen vector. The 

assumptions of this model are ( ) 0iE e  , ( )i iV e  , ( ) 0i jE e e  , ( ) 0i jE e F   and ( ) 0i jE F F  . In 

matrix notation we can write p n p k k n p n    X L F E , where 
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Also, it is assumed that ( ) 0E E , ( ) 0E F , cov( , ) 0F E , 

1 2( ) ( , ,..., ) ( )pV Diag say   E ψ and var( ) F I . The correlation matrix is generally used for 

performing the factor analysis. Here the diagonal elements are 1 (often described as the 

variance of the observed variable). In PCA, this matrix is used as such but factor analysis 

involves the replacing of diagonal element with communality estimate. The communality 

estimate is the estimated proportion of variance of the variable that is free of error variance 

and is shared with other variables in the matrix. These estimates reflect the variance of a 

variable in common with all others together. The initial estimate of the communality is taken 

as the squared multiple correlation coefficients and then the communalities of the variables 

are estimated as the sum of the square of the loadings onto different factors. Once the 

correlation matrix of the observed variables are obtained, the factor analysis can be written 

as  Σ LL ψ , which nothing but var( ) var( )p n p k k n p n    X L F E . So, for the ith variable, one 

can write 2 2 2

1 21 ( ... )i i ip ia a a       or 21 i ih    or Total variance=Variance explained by the 

common factors + Error variance. Here 2

ih is the communality and 1- 2

ih is the variance 

accounted for by the ith unique factor. In this model, there is a need to estimate the common 

factor loadings (L) as well as the factor scores (F). For estimating L, there are two methods 
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available one is Principal Axis Factor (PAF) method and other is Maximum Likelihood (ML) 

method. PAF makes no assumption about the error and minimizes the sum of squares of the 

residual matrix i.e., 2 21
( ) ( )

2
ij ij

i j

tr S s       , where ijs and ij are the observed 

correlation matrix and implied correlation matrix, respectively (Jöreskog, 2007). The 

maximum likelihood (ML) estimation is derived from the theory of normal distribution. The 

ML value is obtained by minimizing 1ln ln [ ]S tr S p     , which similar to minimizing 

the discrepancy function 
2

2 2

( )ij ij

i j i j

s 

 

 
 
  

  (MacCallum et al, 2007). 

For estimation of factor scores, generally three types of methods are used viz., ordinary least 

squares, weighted least squares and regression method. Let xi be the ith observation vector 

and fi is the corresponding vector of factor scores, then we can write 
i i i x Lf e , where 

i=1,2,.., n, and the estimates of factor scores for this model by different methods are provided 

as follows: 

(I) Ordinary Least Square 

The estimate of 
if can be obtained by minimizing the error sum of squares i.e., 

2 2
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         x Lf x Lf . This is like a least 

squares regression, except in this case we already have estimates of the parameters 

(the factor loadings). In matrix notations, it can be written as 1ˆ ( )i i

 f L L L x . 

Using the principal component method with the unrotated factor loadings, the 

results can be obtained as 
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where 1ζ̂ , 2ζ̂ ,…, ˆ
kζ are the eigen vectors and 1̂ , 2̂ ,…, ˆ

k are the estimate of eigen 

values. 

(II) Weighted Least Squares 
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In this method, larger weights are given to the variables having low specific 

variances. Variables with low specific variances are those for which the model fits 

the data best. In other words, the variable with the low specific variance provides 

more information regarding the true values for the specific factors. For the above 

considered model, we wish to 

minimize
2 2

1 1 2 2 1

1 1

( ... )
( ) ( )

p p
ij ij i i ik

i i i i

j jj j

e x a f a f a f

 



 

   
     x Lf ψ x Lf , that 

resulted in the estimate as 1 1 1ˆ ( )i i

   f L ψ L L ψ x . Both OLS and WLS methods are 

used for estimating the factor scores, while PAF method is used to estimate the 

factor loadings. 

(III) Regression method 

This method is used when maximum likelihood is used for estimating the factor 

loadings. Now, for standardized variables the joint distribution of 
ix and 

if can be 

writes as
0

~ ,
0

i

i

N
      

      
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x LL ψ L

f L I
. Then, we can calculate the conditional 

expectation of the factor score
if given the observed data 

ix as 1( ) ( )i i iE   f x L LL ψ x , which is nothing but the estimate of
if . 

Step by step procedure for performing exploratory factor analysis using R 

Step 1: Set the working directory. Let my directory is “meher” present in “D” drive. Then, 

set the directory as 

setwd(“C:/Documents and Settings/Prabin/Desktop/meher”) 

Step 2: Read the data from the specified directory. Let my data file is fact.txt present in the 

directory. Then data file can be imported to R as 

x <- read.table (file= “fact.txt”)  

Step 3: Check the normality assumption of each variable using Shapiro-Wilk’s test. 

shapiro.test (x[,i])      # This is for ith variable. If P-value is >level of significance, the variable 

is normally distributed. 

Step 4: Check the adequacy of the each variable and sample as a whole for factor analysis 

using KSA and KMO and test. The desired value of KMO is > 0.5.  Variables with 

MSA being below 0.5 indicate that item does not belong to a group and may be 

removed from the factor analysis. 

kmo <- function(x) 

{ 

x <- subset(x, complete.cases(x)) # Omit missing values 
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r <- cor(x)                                                 # Correlation matrix 

r2 <- r^2                          # Squared correlation coefficients 

i <- solve(r)                      # Inverse matrix of correlation matrix 

d <- diag(i)                       # Diagonal elements of inverse matrix 

p2 <- (-i/sqrt(outer(d, d)))^2     # Squared partial correlation coefficients 

diag(r2) <- diag(p2) <- 0          # Delete diagonal elements 

KMO <- sum(r2)/(sum(r2)+sum(p2)) 

MSA <- colSums(r2)/(colSums(r2)+colSums(p2)) 

return(list(KMO=KMO, MSA=MSA)) 

} 

kmo (x) 

Step 5: Check that the correlation matrix is not an identity matrix using Bartlett’s sphericity 

test. The test should come out significant. 

bst <- function(x) 

{ 

method <- "Bartlett's test of sphericity" 

data.name <- deparse(substitute(x)) 

x <- subset(x, complete.cases(x)) # Omit missing values 

n <- nrow(x) 

p <- ncol(x) 

chisq <- (1-n+(2*p+5)/6)*log(det(cor(x))) 

df <- p*(p-1)/2 

p.value <- pchisq(chisq, df, lower.tail=FALSE) 

names(chisq) <- "X-squared" 

names(df) <- "df" 

return(structure(list(statistic=chisq, parameter=df, p.value=p.value, 
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method=method, data.name=data.name), class="htest")) 

} 

bst (x) 

Step 6: Test that there is no presence of high degree of multicollinearity. The determinant of 

the matrix should come out > 0.0001 to pass the test. 

det(cor(x)) 

Step 7: Carryout factor analysis to extract the factor loadings (by ML estimate method), 

common variances and specific variances. 

factanal (x=swiss, factors=2, rotation= “varimax or promax”) 

or 

factanal (~., factors=2, data=swiss, rotation= “varimax or promax”) 

# In the result one cannot see the complete factor loadings but it is possible with the 

following commands. 

factanal (~., factors=2, rotation= “varimax or promax”)$loadings[,i] # for complete ith factor 

loading. 

 Step 8: Estimate the factor scores either by Bartlett’s WLS method or Johnson’s regression 

method. 

factanal (~., factors=2, rotation= “varimax or promax”, scores=”Bartlett or 

regression”)$scores 

Step 9: The factor loadings, common variances, specific variances can also be computed by 

supplying the covariance matrix and number of observations. However, the scores can 

only be obtained when full data set is available. 

factanal (factors=2, covmat=cor(swiss),rotation= “varimax or promax”, n.obs=47) 

Step 10: Interpretation of the result and conclusion 

___________________________________________________________________________ 

Note: One can use the “psych” package of R-software for KMO test and Barlett’s test of 

sphericity using single line code as provided below.  

KMO(r) # r is the correlation matrix. This will provide the values of both KMO and KSA 

cortest.bartlett(r, n) # r is the correlation matrix and n is the number of observation in the 

dataset. 
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Application of Random Forest in Genome Wide Association Studies 

Decision tree learning is a method commonly used to create a model that predicts the value of 

target variable based on several input variables. Decision trees are of two types; (i) 

classification tree (ii) regression tree. Classification tree analysis is there when the response 

variable is a class label and the regression tree analysis is there when the response variable 

takes the values of real number. A classification tree is obtained by asking an ordered 

sequence of questions, where the type of questions asked at each step in the sequence 

depends upon the answers required for the previous questions of the sequence. The sequence 

always terminates in a prediction of the class label attached to the observation. The starting 

point of a classification tree is called the root node and consists of the whole data set at the 

top of the tree. A node in a tree can be a terminal or non-terminal node. A non-terminal (or 

parent) node is a node that split into daughter nodes. A node that doesn’t split is called a 

terminal node and is assigned a class label. When an observation of unknown class is dropped 

down the tree and ends up at a terminal node, it is assigned to that class corresponding to the 

class label attached to that node. There may be more than one terminal node with the same 

class label. A single split tree with only two terminal nodes is called a stump. In case of 

binary splitted node, the split is determined by a Boolean condition on the value of a single 

variable, where the condition is either satisfied (“yes”) or not satisfied (“no”) by observed 

value of that variable. All the observations in the data set that have reached to a particular 

node and satisfy the condition for that variable drop down to one of the two daughter nodes 

and the remaining observations at that node that don’t satisfy the condition drop down to the 

other daughter node.  

Let x1 and x2 be two variables and θi (i=1, 2, 3, 4) be any values of the variables then the tree is 

grown by asking following questions: 

(1) Is x2 ≤θ1? If the answer is yes, follow the left branch;  

      if no follow the right branch. 

(2) If the answer to question (1) is yes, then ask the next 

question: Is x1 ≤θ2?  

     if the answer is yes, follow the left branch (terminal);  

     if no follow the right branch (terminal). 

(3) If the answer to question (1) is no, ask the next question: 

Is x2 ≤θ3?                

(4) if the answer to (3) is yes, {then ask the next question: Is 

x1 ≤θ4? 

 

 x2 ≤θ1?  

 x1 ≤θ2?  

 x2 ≤θ3?  

 x1≤θ4?  
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     if the answer is yes, follow the left branch (terminal);  

     if no follow the right branch (terminal)}.  

     if the answer to (3) is no, it leads to the terminal node            

Aspect of growing Tree 

For growing a classification tree, following four aspects need to be discussed  

 Choosing the Boolean conditions for splitting at each node 

 Criterion to be used to split a parent node into its daughter nodes 

 To decide a node to become a terminal node 

 Assigning a class to a terminal node  

Splitting strategies 

In the splitting strategy the first two aspects of growing tree are discussed. 

Number of possible splits 

For continuous or ordinal variable, the total number of possible splits at a given node is one 

fewer than the number of its distinctly observed values. For nominal or categorical variable 

of m distinct categories, there will be 2m-1-1dinstict splits at a particular node. 

 Node impurity function 

To chose the best split among all variables, first chose the best split for a given variables by 

using measure of goodness of split. Let Π1,…,ΠK be the K≥2 classes. For node τ, the node  

impurity function i(τ) is given as i( ) (p(1 ),...,p(K ))     ,Where  is an estimate of 

P(ÐK/ô) which is the conditional probability that an observation X is in Ðk given that it falls 

into  

node ô. The function   will attain maxima at the point ( ) on the set of K-tuples of 

probabilities (p1,…,pK) and its sum is unity. In the two classes case (K=2), these condition 

reduces to a symmetric (p)  maximized at the point p=1/2. One such function   is the entropy 

function,   

 

and for binary classes it reduces to                                                                 

K

k 1

i( ) p(k ) log p(k )  


 

i( ) p log p (1 p) log(1 p)     
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 Choosing best split for a variable 

Let at node ô, after applying split s, a portion pl goes to the daughter node ôl and the 

remaining portion pr goes to the right daughter node ôr. Then the goodness of split s at nod ô 

is the reduction in impurity gained by splitting the parent node ô in to its daughter nodes ôl 

and ôr, which is given by                                                  . 

 

For example, consider a data set having the response variable y that has two values 0 and 1 

and suppose one of the possible split of the input variables xj is xj≤ c vs. xj> c, where c is 

some values of xj. Then a 2×2 table can be prepared as follows: 

 1 0 Row total 

xj ≤ c n11 n12 n1. 

xj > c n21 n22 n2. 

Column Total n.1 n.2 n.. 

 Now for the parent node ô,  pl=( n.1 / n..) and pr=( n.2 / n..) so the impurity function at the 

parent node will be  

 

 

Now  for the daughter nodes ôl and ôr , for xj ≤ c, pl=( n11 / n1.) and pr=( n12 / n1.) and for xj > c, 

pl=( n21 / n2.) and pr=( n22 / n2.). Then the impurity function at the daughter nodes will be  

 

 

 

and the best split for the single variable xj is the one that has largest value of  over all s 

ª Sj, the set of all possible split for xj . 

Choosing best split at a node 

A tree starts with the root node, which consists of all observation. By using the goodness-of-

fit criterion for a single variable, the best split at the root node for each of the variables x1 to 

xr can be found. The best split s at the root node is then the one that has the largest value of 

 over all r single-variable best splits at that node. 

.1 .1 .2 .2
e e

.. .. .. ..

n n n n
i( ) log log

n n n n


       
         

       

11 11 12 12
l e e

1. 1. 1. 1.

n n n n
i( ) .log .log

n n n n


       
         

       

21 21 22 22
r e e

2. 2. 2. 2.

n n n n
i( ) .log .log

n n n n


       
         

       

l l r ri( ) i( ) p i( ) p i( )      
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Choosing terminal node 

A node can be declared as a terminal node if it fails to be larger than certain predetermined 

size; that is , if n(ô) ≤ nmin , where n(ô) is the number of observations in node ô and nmin is 

some previously assumed minimum size of a node. The terminal node act as a break on the 

tree growth, the larger the value of nmin, the more severe the break. In another way a node can 

be declared as a terminal node if the largest goodness-of-fit value at that node is smaller than 

a certain predetermined limit. However, these stooping rules are not fruitful in reality. A 

better approach is to let the tree grow to saturation and then prune it back (Breiman et al. 

1984). 

Associating a class with the terminal node 

Suppose at a terminal node ô there are n(ô) observation of which nk(ô) are from class Πk, 

k=1,…,K. then the class which corresponds to the largest of the {nk(ô)} is assigned to ô. This 

is called plurality rule and it can be easily obtained from the Bayes’s rule classifier, where the 

node ô can be assigned to the class Πi if  

  

Let p(ôª Πi) = pi , (i=1,…,K), be the prior probability of the nod ô belonging to different 

classes i.e., pi = ni(ô)|n(ô)) and let pi(ô) = p(ô|Πi) be the probability distribution function of 

observations in node ô  belonging to class Πi. then the posterior probability of that node ô 

will be assigned the class Πi is given by  

 

 

The Bayes’s rule classifier for K classes assigns ô to that class with the highest posterior 

probability. Since the denominator is fixed for all the classes, the node ô will be assigned to 

the class Πi if                                        

 

Ensemble of classifiers 

A well-known method of building classification systems is to build multiple classifiers, each 

from a subset of the original training set, such that the final classification decision is 

aggregated from all classifiers' decisions. This method is called the classifier ensemble 

method (Buhlmann et al. 2004). For example, five classifiers could be built independently 

using five different subsets of the original training set. These five classifiers would produce 

five predictions of the class label for each new record, and the class with a plurality of votes 

would be the prediction of the entire ensemble. It is also possible to extend this simple voting 

i i
i K

k k

k 1

p ( ).p
p( )

p ( ).p







 



i k
1 k K

p( ) max p( ) 
 

  

i k
1 k K

p( ) max p( ) 
 

  
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scheme so that each individual classifier prediction is given a weight, perhaps based on its 

test accuracy. The overall prediction becomes the plurality of the weighted votes.  

Classifiers in an ensemble can all have the same type, or they can be of different types. For 

example, an ensemble with three classifiers can consist of three decision trees, or it can 

consist of a decision tree, a neural network (Kantardzic, 2003), and a Bayesian network 

(Dunham, 2003). Both kinds of ensembles are known to perform better than single classifiers. 

The variance between classifiers is reduced in the case of classifiers of the same type, and the 

bias between classifiers is reduced for ensembles with different types of classifiers. The 

classification models of ensembles for both kinds are, therefore, more representative of the 

data than a single classifier. In other words, having multiple strong classifiers each built from 

a different sample of the dataset leads to a final classification decision with higher accuracy 

than a single classifier. 

Generating the datasets used for training the classifiers in an ensemble can be done by 

different methods such as bootstrap sampling (bagging) (Breiman, 1994), and boosting 

(Freund and Schapire, 1996). Suppose that a dataset contains n records, each with m 

attributes. Bootstrap sampling or bagging generates the datasets each of size n by randomly 

sampling the records with replacement. Hence the training dataset for each tree contains 

multiple copies of some of the original records. Boosting maintains weights for records in the 

training set, such that these weights are updated after each classifier is trained according to 

the difficulty of classifying the current set of records. The weights are then used to derive the 

new sampling for the dataset. 

Random Forest 

Bagging (Bootstrap aggregating) was the first procedure that successfully combined the 

ensemble of tree classifiers to improve the performance over a single classifier (Breiman, 

1996b). In bagging randomization is introduced only while selecting the data set on which 

each tree is grown. Random forest (Breiman, 2001) is an extension of this bagging procedure 

where another source of randomization is introduced by choosing a subset of m variables at 

each node and node is split on the basis of best split. 

Let  ( , ), 1,2,...,i iL y i n x  is the learning data set where yi is the response variable and it 

takes values from K classes and there are p variables in the data set. Random forest consists 

of ensemble of B classifiers 1 1( ), ( ),..., ( )Bh h hx x x , where each classifier is constructed upon a 

bootstrap replica of the learning data set, by selecting randomly selecting a subset of m 

variables out of p variables and the best split is determined on the basis of m selected 

variables using gini index.. Each classifier votes for one of the classes for each test instances 

and test instance is classified by the label of winning class. As the individual trees are 
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constructed upon a bootstrap replication, there is on an average 36.8% of instances are not 

playing any role in the construction of the tree. These instances are called out of bag (OOB) 

instances. These OOB instances are the source of data used in the random forest for 

estimating the classification error and to evaluate the performance of the random forest. 

Random forests are computationally very efficient and offer good prediction accuracy and are 

less sensitive to noisy data. 

Some features of RF 

Let (x, y) denote the learning instances having n number of observations where each vector of 

attributes x is labeled with class yj, (j=1,2,…,c). The correct class is denoted by y. p(yj) is the 

probability of class yj . denote the set of OOB instances for classifier hb as Ob. Let jQ( , y )x be 

the OOB proportion of votes for class yj for input vector x. 

B

b j b

b 1
j B

b b

b 1

I(h ( ) y ;( , y) O )

Q( , y )
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The Margin function, strength and Correlation between classifiers in a RF is defined as 

follow. 

Margin function- The “margin function” measures the extent to which the average vote for 

right class y exceeds the average vote for any other class. The margin function of the labeled 

observation (x, y) is 
1

( , y) ( ( ) ) max ( ( ) )
c

j
j
j y

m P h y P h y



   x x x . If m(x, y)>0, then h(x) 

correctly classifies y. h(x) denote a classifier that predict the label y for an observation x. 

Strength- It is defined as the expected margin, and is computed as the average over the 

training set. 
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where I(.) is the indicator  function 

Advantages 

 People could understand and interpret easily after brief explanation  

 Many data analysis techniques require data normalization, creation of dummy 

variable etc. but it requires little data preparation. 

 Generally the techniques are specialized in analyzing data set having only one type of 

variable, but it handles both numerical and categorical data. 

 Performs well with large data in a short time 

SNP Detection 

Single Nucleotide polymorphism (SNPs): - SNPs are the variations in individual’s building 

blocks (base pairs) of DNA sequences that are distributed randomly over the genome and 

passed from generation to generation. Identification of SNPs is important in several 

applications of Microarrays, including Genotyping, forensic analysis, identification of 

disease, identifying drug-candidates, evaluating germline mutations in individuals, assessing 

loss of heterozygosity, or genetic linkage analysis and many more. 

In CLC Genomic Workbench, the SNP detection will scan through the entire data for the 

SNPs. 

Toolbox | High-throughput Sequencing 

 

         Roche 454| SNP detection 

An E. coli data set consisting of a little more than 400,000 reads from a 454 sequencer is used 

here as an example data set. Select the Ecoli.FLX.fna and Ecoli.FLX.qual with the Remove 

adapter sequence checkbox is checked and that the paired-end reads checkbox is NOT 

checked.  

                          Next 

                                                       

                                                         Finish and save 

 

After a short while, the reads have been imported 

 

                 Next, import the reference genome sequence (e.g. NC_010473.gbk) 
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Mapping the reads to reference 

The first step is to map the reads to the reference genome.  

Select the E.coli.FLX sequence list 

                                                       

                                            Toolbox| High-throughput Sequencing 

 

Reference Assembly 

 

Select sequence list containing the reads. The reference sequence will be selected in the next step. 

 

                 Next, import the reference genome sequence (e.g. NC_010473.gbk) 

 

Specifying the reference sequences and masking. 
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Results of the reference assembly  

List of non-assembled reads: It will give the list of reads that did not match the reference 

sequence. This list can be used to investigate the contamination in the sample or structural 

differences between the sequencing data and the reference sequence followed by performing 

de novo assembly of these reads and then use BLAST to investigate the contigs. 

Report: This report shows the information about the assembly and the number of reads that 

matched the reference sequence. 

Contig: The contig shows the alignment of all the reads to the reference including quality 

scores. For annotated reference sequences it displays the translation of the coding regions (the 

yellow CDS annotations) in the Side Panel in the Nucleotide info group under Translation. 

 

The contig with the reads mapped to the reference. 

Parameters 

Sequence layout –Compactness:  It is used to used to determine the height of the reads 

Alignment info – Coverage: It displays a graph of the coverage along the contig. The read 

colors are green (forward) and red (reverse) by default. 

Looking for SNPs 

CLC Genomics Workbench provides two tools: SNP and DIP detection to help you get an 

overview of the differences between the reference sequence and the reads. 

Toolbox | High-throughput Sequencing 

 

           SNP detection 

     Next 

 

            Finish and Save 
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Parameters 

Add SNP annotations to reference: This will add an annotation for each SNP to the 

reference sequence. 

 

SNP detection parameter 

Add SNP annotations to consensus: This will add an annotation for each SNP to the 

consensus sequence. 

Create table: This will create a table showing all the SNPs found in the data set with all the 

valuable overview, whereas the annotations are useful for detailed inspection of a SNP, and 

also if the consensus sequence is used in further analysis. 

SNP Annotation 

 

A SNP annotation within a coding region 

The SNP in the above figure is showing a coding region and with one of the variations 

actually changes the protein product (from Lys to Thr). 
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A SNP annotation with associated information 

The result of the SNP detection will now open a table 

 

A table of SNPs. 

 

Filtering the SNP table to only display nonsynonymous SNPs. 
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Phylogenetic Analysis 

(Practical) 

 

Before we can perform any kind of analysis, we have to activate a MEGA file.  A Mega file 

is file that contains a multiple sequence alignment that has been exported from the Alignment 

Explorer in Mega file format. We can either activate a Mega file that we have saved 

somewhere on our computer or flash drive, or we can create a new Mega file from a creating 

a multiple sequence alignment in the Alignment Explorer and then exporting the alignment as 

a Mega file.  

Creating Multiple Sequence Alignments with Alignment Explorer 

 

I) Creating multiple sequence alignment from an open text file 

 

1. Launch the Alignment Explorer by selecting Alignment -> Alignment/CLUSTAL 

2. A window will appear asking you either to a) Create a new alignment, b) Open a 

saved alignment session, or c) Retrieve sequences from a file.  Select the first option, 

“create a new alignment”. 

3. Copy and paste unaligned sequences from the text file to the Alignment Explorer. 

4. In the Alignment Explorer highlight all the sequences by selecting Edit -> Select All. 

5. Align the highlighted sequences by selecting Alignment -> Align by ClustalW. 

6. Save the current alignment as an alignment session file by selecting Data -> Export -

> Save.  This will allow the current alignment session to be restored for future editing 

in a file with the extension “.mas”, i.e. cox_alignment.mas 

7. Save the current alignment as a MEGA file by selecting Data -> Export -> MEGA 

file.  This will allow the current alignment to be analyzed by MEGA. 
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Figure 1: sequence retrieval in MEGA software 
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II) Creating multiple sequence alignment from the MEGA web browser using text 

searching 

1. Activate the Web Explorer tab by selecting Alignment -> Show Web Browser. 

2. When NCBI is loaded, select any one of the databases, i.e. Entrez Gene, nucleotide, or 

protein.  Enter your search terms for your desired sequence. 

3. When the search results are displayed click the box to the left of each accession 

number whose sequence information you would like to download  

4. Change the display of your results in the browser to fasta format by changing the 

selection in the Display drop box Summary to Fasta. 

5. Change the screen from html format to text format by changing the drop box with 

Send to selected to Text. 

6. To add these sequences to the Alignment Explorer, click the Add to Alignment 

button and these sequences will be automatically added.  Steps 1 through 6 can be 

repreated several times and more sequences will continually be added to the 

Alignment Explorer. 

7. Align the sequences using the steps detailed in above beginning at step 4. 

 

III) Creating multiple sequence alignment from the MEGA web browser using BLAST 

1. Activate the Web Explorer tab by selecting Alignment -> Show Web Browser. 

2. Click on the BLAST hyper link on the NCBI homepage 

3. Select the appropriate BLAST program for your search by clicking on one of the 5 

options. 

4. Copy in your sequence and perform your blast search. 

5. When your results are returned, lcick on the box to the left of each accession number 

whose sequence information you would like to download. (If you want to select 

everything, click the Select All button). 

6. Now follow steps in the previous section beginning at step 4.   
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Constructing Trees  

 

1. Activate the data file that you want to analyze by clicking the link Click me to 

activate a data file. 

2. Select the Phylogeny -> Construct Tree -> Neighbor-Joining command to display 

the analysis preferences dialog box. 

3. In the Options Summary tab, click the Model pulldown (found in the Substitution 

Model section) and then select the Amino Acid -> p-distance option.  A progress 

indicator will appear briefly, then the tree will be displayed in the Tree Explorer. 

4. To select a branch, click on it with the left mouse button.  IF you click on a branch 

with the right mouse button, you will get a small options menu that will let you flip 

the branch and perform various other operations on it.  To edit the OUT labels, double 

click on them. 

5. Change the branch style by selecting the View->Tree/Branch Style command from 

the Tree Explorer menu. 



High Dimensional Genome data Analysis by R and Open Source Tools CAAST-2019 

 

Page | 230 

6. At this time the cursor assumes a triangular shape instead of the diamond shape.  

Press M and the mirror image of the original tree is displayed instantly.  Press M 

again and the tree reverts to its original shape. 

7. Select the View -> Topology Only command from the Tree Explorer menu and the 

branching pattern (without actual branch lengths) is displayed on the screen.  Press T 

again and the actual NJ tree reappears. 

8. Press F1 to examine the help for tree editor.  Use the help to become familiar with the 

many operations that Tree Explorer is capable of performing. 

9. DO NOT remove the tree from the screen.  We shall use it for illustrating how a tree 

can be printed. 

Printing the NJ tree 

1. Select the File –> Print command from the Tree Explorer menu to bring up a 

standard Window print dialog. 

2. To restrict the size of the printed tree to a single sheet of paper, choose the File-

>Print in a Sheet command from the Tree Explorer menu. 

Constructing a maximum parsimony tree by using the branch-&-bound search option. 

1. Select Phylogeny -> Construct Tree -> Maximum Parsimony command.  In the 

resultant preferences window, choose the Max-Mini Branch-&-Bound Search option 

in the MP Tree Search Options tab. 

2. Click the “OK” button to accept the defaults for the other options and begin the 

calculation.  A progress window will appear briefly and the tree will be displayed in 

Tree Explorer. 

3. Now print this tree.   

4. Exit out the tree. 

5. Compare the NJ and MP trees.   

Test the reliability of a Tree Obtained. 

1. Select the Phylogeny -> Bootstrap Test of Phylogeny->Neighbor-Joining from the 

main application menu. 

2. An analysis preferences dialog box appears.  Use the Models pulldown to ensure that 

Amino-Acid -> p-distance model is selected.  Note that only the Amino-Acid 

submenu is available. 
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3. Click “Compute” to accept the default values for the rest of the options and compute 

the tree.   

4. Once the computation is complete, the Tree Explorer appears and display two tree 

tabs.  The first is the original Neighbor-Joining tree and the second is the Bootstrap 

consensus tree.  

5. To produce a condensed tree, use the Compute -> Condensed Tree menu command 

from the Tree Explorer menu.  This tree shows all the branches that are supported at 

the default cutoff value of BCL >= 50.  To change this value, select the View-

>Options menu command and click the cutoff values tab.  Select the Compute -

>Condensed Tree  menu command and the NJ tree will reappear. 

6. Print this tree 
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Genome Wide Association Study (GWAS) 

 

A genome-wide association study is an approach that involves rapidly scanning markers across 

the complete sets of DNA, or genomes, of many subjects to find genetic variations associated 

with a particular trait. Once new genetic associations are identified, researchers can use the 

information to develop better strategies to detect and manage the trait. Such studies are 

particularly useful in finding genetic variations that contribute to common, complex traits. In 

other words, Genome Wide Association Studies (GWAS) is based on correlations between 

genetic markers (usually Single Nucleotide Polymorphisms, short SNPs) and any measurable 

trait in a population of individuals. The main motivation in identifications of these associations 

is to find out new candidates for causal variants in genes (or their regulatory elements) that 

play a role for the phenotype of interest. This may eventually lead to a better understanding of 

the genetic components of the trait. Current GWAS usually include the following steps: 

 Genotype calling from the raw chip-data and basic quality control. 

 Principle Component Analysis (PCA) to detect and possibly correct for population 

stratification. 

 Genotype imputation (using linkage disequilibrium information from HapMap). 

 Testing for association between a single SNP and continuous or categorical phenotypes. 

 Global significance analysis and correction for multiple testing. 

 Data presentation (e.g. using quantile-quantile and Manhattan plots). 

 Cross-replication and meta-analysis for integration of association data from multiple 

studies. 

It has been found that (meta-) studies with many thousands (and even ten-thousands) of 

samples could at best identify a few (dozen) candidate loci with highly significant associations.  

Although, these unknown associations have been replicated in independent studies, each locus 

explains but a tiny (<1%) fraction of the genetic variance of the phenotype. Number of reasons 

could be attributed to this fact. Some important reasons are as follows:  

 Estimation of heritability of trait from one generation to another is a problem especially 

for low heritable traits. 

 Often genotype information is incomplete. For example, most analyses used 

microarrays probing of fractions of SNPs, while many of these SNPs can be imputed 

accurately using information on linkage disequilibrium. There still remains a significant 

fraction of SNPs which are poorly tagged by the measured SNPs. Furthermore, rare 
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variants with a Minor Allele Frequency (MAF) of less than 1% are not accessed at all 

with SNP-chips, which may nevertheless be the causal agents for many phenotypes. 

Finally, other genetic variants like Copy Number Variations (CNVs) (or even 

epigenetics) may also play an important role. 

 Current analyses usually only employ additive models considering one SNP at a time 

with few co-variables and principle components reflecting population sub-structures. 

This obviously covers a small set of all possible interactions between genetic variants 

and the environment. Even more challenging task is taking into account purely genetic 

interactions, since already the number of all possible pair-wise interactions scales like 

the number of genetic markers squared. 

Micro satellites markers are generally used for finding association with a candidate gene or 

linked region of a chromosomes. This is due to the fact that linkage exists over a very broad 

region and entire chromosome can be divided only 400-800 DNA markers regions. This can 

be used for population/family based designs. Using SNPs are more appropriate in other cases 

but cost plays an important role in this case. 

Single Nucleotide Polymorphisms 

The modern unit of genetic variation is the Single Nucleotide Polymorphism or SNP. SNPs are 

single base-pair changes in the DNA sequence that occur with high frequency in a genome. For 

the purposes of genetic studies, SNPs are typically used as markers of a genomic region, with 

the large majority of them having hardly any impact on biological systems. SNPs can have 

functional consequences, however, causing amino acid changes, changes to mRNA transcript 

stability, and changes to transcription factor binding affinity. SNPs are by far the most abundant 

form of genetic variation in living organism. SNPs typically have two alleles, meaning within 

a population there are two commonly occurring base-pair possibilities for a SNP location. The 

frequency of a SNP is given in terms of the minor allele frequency or the frequency of the less 

common allele.  Rare SNPs i.e. SNPs with low frequency in the population are sometimes 

referred to as mutations though they can be structurally equivalent SNPs - single base-pair 

changes in the DNA sequence. In the genetics literature, the term SNP is generally applied 

common single base-pair changes, and the term mutation is applied to rare genetic variants. In 

is well known fact that common traits are likely to be influenced by genetic variation that is 

also common in the population.  Also, if common genetic variants influence the trait, the effect 

size for any one variant must be small relative to that found in rare trait. Therefore, the allele 

frequency and the population prevalence are completely correlated. However, if a SNP caused 

a small change in gene expression that has small effect, then the influential allele would be 

only slightly correlated.  Further, if common alleles have small genetic effects, but show 

heritability then multiple common alleles must influence disease susceptibility. These points 

suggest that traditional family-based genetic studies are not likely to be successful for complex 



High Dimensional Genome data Analysis by R and Open Source Tools CAAST-2019 

 

Page | 234 

traits, prompting a shift toward population-based studies. The frequency with which an allele 

occurs in the population and the risk incurred by that allele for complex trait are key 

components to consider when planning a genetic study along with impact of  the technology 

needed to gather genetic information and the sample size needed to discover statistically 

significant genetic effects. Under these circumstances we need to go for GWAS. GWAS needs 

large sample sizes and a large panel of genetic markers technology to gather genetic 

information to discover statistically significant genetic effects.  

Linkage disequilibrium (LD) mapping of QTL exploits population level associations between 

markers and QTL.  These associations arise because there are small segments of chromosome 

in the current population which are descended from the same common ancestor.  These 

chromosome segments, which trace back to the same common ancestor without intervening 

recombination, will carry identical marker alleles or marker haplotypes, and if there is a QTL 

somewhere within the chromosome segment, they will also carry identical QTL alleles.  There 

are number of QTL mapping strategies which exploit LD, the simplest of these is the genome 

wide association test using single marker regression 

Genome Wide Association Study 

It refers to a method / methodology for interrogating large number of variable points across a 

genome. As these variations are inherited in groups, or blocks, not all   points have to be tested. 

It is an approach which involves rapidly scanning markers across the complete sets of DNA, 

or genomes of number of subjects to find genetic variations associated with a particular trait. 

Once new genetic associations are identified, researchers can use this information to develop 

better management strategies.  Genome-wide association studies were made possible by the 

availability of chip based microarray technology for assaying one million or more SNPs. Two 

primary platforms have been used for most GWAS i.e.  Illumina and Affymetrix.  The 

Affymetrix platform prints short DNA sequences as a spot on the chip that recognizes a specific 

SNP allele. Alleles (i.e. nucleotides) are detected by differential hybridization of the sample 

DNA. Illumina on the other hand uses a bead-based technology with slightly longer DNA 

sequences to detect alleles. The Illumina chips are more expensive to make but provide better 

specificity. It is important to note that the technology for measuring genomic variation 

changing rapidly. Chip-based genotyping platforms are being replaced over the years with 

inexpensive new technologies for sequencing the entire genome i.e. next-generation 

sequencing methods. There are two primary classes of phenotypes categorical i.e. binary 

(case/control) and quantitative. Statistically, quantitative traits are preferred because as they 

improve power to detect a genetic effect, and often have a more interpretable outcome.  The 

study design for this genetic association differs based on (i) scale of study i.e. genome wide 

based or genomics based,  (ii) marker design, which depends on selection of best marker i.e. 

microsatellite, SNP and CNV (iii) subject design i.e. based on candidate gene or genome wide 

screening approach.   
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The genome wide studies mainly classified in to three categories i.e. cohort studies, family 

based study and case-control studies. In case of cohort studies, the subjects are assumed to be 

representative of the population. The phenotypes are used to ascertain the similarity among 

these subjects irrespective of genetic variations. This technique directly measures the risk and 

also less biased then case control studies. But it requires long follow up with large sample size. 

It also very expensive and poorly suited for rare traits. In case of family based studies, the basic 

assumption is that families are representative of the population of interest and both parents are 

from same genetic background. The major advantage of this technique is that, it checks for 

Mendelian in heritance and less prone to spurious associations. In this case, parent phenotypes 

are not required. It also allows for investigation imprinting and simple logistics techniques are 

applicable to detect the association.  It is cost inefficient, with low power and very sensitive to 

genotyping errors. Third types of studies are known as case-control studies. In these studies, 

subjects are drawn from same population and cases represent all cases of the population. These 

are simple, cheap, and we can use large number of case and control variables. These are optimal 

for studying rare traits.  In this, results are prone to population stratification criterion. In this, 

batch effect and other biases plays a major role. Generally it gives over estimation for common 

traits. Mostly, GWAS are used in diseased studies. In case of disease studies, there are three 

types of diseases as follows: 

 Monogenic diseases: This is also a single gene produce disease. Often these disease 

are severe and appear early in life cycle. For the population as a whole, they are 

relatively rare. In a sense, these are pure genetic diseases. They do not require any 

environmental factors to elicit them. Although, nutrition is not involved in the 

causation of monogenic diseases, these diseases can have implications for nutrition. 

They reveal the effects of particular proteins or enzymes that also are influenced by 

nutritional factors.  

 Oligogenic diseases: These are conditions produced by the combination of two, three, 

or four defective genes. Often a defect in one gene is not enough to elicit a full-blown 

disease, but when it occurs in the presence of other moderate defects, a disease 

becomes clinically manifest. It is the expectation of human geneticists that many 

chronic diseases can be explained by the combination of defects in a few (major) genes. 

 Polygenic disease: This is third category of genetic disorder. According to the 

polygenic hypothesis, many mild defects in genes conspire to produce some chronic 

diseases. To date, the full genetic basis of polygenic diseases has not been worked out 

as multiple interacting defects are highly complex. 

In case of association analysis, we need to have selection of representative samples from the 

population of interest and complete and accurate genotype data set. Therefore, in this statistical 

analysis representative sample can be selected using appropriate sampling procedure 

depending on cost of experiments. However, missing values in genotypes is non-avoidable. 
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Therefore, we need to employ appropriate imputation techniques. Brief descriptions about 

these two techniques are given in subsequent paragraphs.  

Sampling Techniques 

The genesis of multiphase design for case control studies are from sample surveys. Initially, 

two phase sampling was introduced by Neyman (1938) as a technique for stratification. In this 

technique researcher needs to draw a Simple Random Sample from the target population and 

classify objects into homogeneous strata. Further, subsamples from each stratum are drawn and 

observations on variable are recorded only on these sub-samples drawn in the second phase. 

With judicious choice of strata and optimum sampling ratios, these designs are very cost 

efficient. The basic idea of these designs is to use information available on all subjects in the 

main study and draw more informative sub-samples for additional, more expensive, 

measurement and combining the information from both phases in the analysis. This concept 

for in Genome Wide Association Studies (GWAS) was introduced by Satagopan et. al. (2002),. 

Previously, this design has been cited in epidemiologic literature by White (1982). The basic 

goal of two phase design is to maximize the power to detect gene and disease association when 

the main design constraint is the total cost. Mainly, this total cost depends on number of gene 

evaluations rather than total number of individuals. Therefore, in the first phase, all the genes 

of our interest are evaluated on a sub-set of individuals. Later, most promising genes are 

evaluated on additional/same subjects in the second phase. This will eliminate the wastage of 

resources on genes, which are not likely to be associated with a particular trait. In this situation 

we find two types of cases i.e.  (i) when genes are co-related (ii) when genes are independent. 

Let us assume the unit cost per gene evaluation and let T denotes the total number of genetic 

evaluation or total cost. Let, in a genome, there are m genetic loci.  Consider very simple 

situation that out of these m gene only one gene is associated with the trait (disease) under 

consideration. Now our problem is to identify this true gene which is associated with our trait. 

Let there are N individuals which are available. In absence of any cost constraints the best way 

is to evaluate all m markers for all N subjects with a total cost of mN. The best way of testing 

association with the trait under this situation is making 2 X 2 table for each locus with presence 

or absence of trait as rows and alleles as columns then apply chi-square test for association. 

The target gene would be selected based on largest test statistics. Now let us assume a situation 

when T < mN,  then it is not possible to evaluate all m markers but only T/m individuals can 

be evaluated at first stage, but selection of T/m individuals should be in such that the possibility 

of  missing true gene associated with trait is minimum. Therefore, this design needs to be 

optimized for two stage selection. 

In this design, all m genes are evaluated on n1 individuals, where proportion of cases with trait 

and control remains the same as in the case of N individuals. After application of test statistics, 

rank them based on absolute value of test statistics. In the second stage, select top mi genes 
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where “i” is proportion of genes on sub-sequent subjects till cost is T through selection of same 

proportion of case and control subject as in the original population. Now, the problem boils 

down to determination of value n1 and i (ith proportion) so that it leads to maximum probability 

of selecting true gene i.e. maximum power P of the statistics. Then T = n1m + n2mi  where, n2 

is numbers of subjects at the second stage. Now our aim is to maximize P with respect to ni 

and i subject to fixed T and m. Since, T/ m= n1 + n2i = fixed, therefore, choosing n1 and i 

determines n2. In other word, optimization of power for two stage design can be seen 

equivalently, as determination of proportion of resources at the first stage i.e. j= n1m/T  and 

determination of proportion “i”  of the genes to be evaluated at the second stage. The proportion 

of total number of subject required for two stage design is given by j+(1-j)/i. 

In other words, P can be written as P1 * P2 under the assumption that mutational profiles of all 

genes are mutually uncorrelated. Hence, P1 is the probability that true gene is among top ith 

proportion in stage 1 and P2 is the probability that true gene has highest association among all 

null genes at stage-2. These probabilities can be calculated using statistical distributions (may 

be Gaussian approximation). In practice, the assumption of independent gene outcome may not 

be true within individual in case of testing multiple markers. These outcomes may be correlated 

due to various factors, such as genetic linkages and loss of heterozygosis, allele frequency, and 

marker density. The correlation due to recombination can be easily quantified and further these 

can be modelled through statistical distributions. Further these probabilities can be further 

evaluated using Mote Carlo simulation for different values of i, j and μ (mean). This design 

can be further extended for optimal design for more than one true gene. 

Genotype Imputation 

Identification and characterization of genetic variation of a species which affects its important 

traits are very important for increasing production and productivity in agriculture especially in 

the context of development of improved biotic and abiotic resistance breeds/varieties. The basic 

idea is that, data on a modest set of genetic variant measured in number of related subjects can 

provide useful information about other genetic variants in those subjects forms the theoretical 

under pinning of both genetic linkage mapping in pedigree and haplotype mapping in founder 

population. These studies typically used few markers to survey entire genome through 

identification of parts of chromosomes inherited from common ancestor. Earlier in genetic 

linkage and haplotype mapping, it was expected that long sketches of shared chromosome 

inherited from a relatively recent common ancestor. Sometimes, the focus of GWAS is on 

unrelated individuals and it expected to have small stretch on shared chromosome. Under these 

circumstances genotype imputation can use these short stretches of shared haplotype to 

estimate with great precision the effects of many variants that are not directly genotyped.  

There are two broad categories of genotype imputation. First, imputing missing genotype from 

information on close relatives and second, genotype imputation from distant relatives. If it is 
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known that the haplotype individuals carried at every point on the genome and SNP alleles are 

also known within each unique population haplotype then it is possible to impute genotypes 

which a individual carries for any SNP locus. Genotype imputation is important due to 

following reasons:- 

 In case of accurate SNP array technology also, large number of SNP genotype are 

missing which poses problems in genomic selection and GWAS. 

 Genotype imputation can be used to get high density genotype when subject has been 

genotyped with low density array. 

 It is quite useful for combining data sets genotyped from two different panels with 

sufficient overlap between panels. 

 Genotype imputation is applied to recover genotype from full genome sequence data. 

(i.e. from very dense SNP/insertion and deletion, CNV for genomic predictions and 

GWAS). 

There are number of approaches/tools for imputing missing Genotypes such as PHASE 

(IMPUTE 1.0, IMPUTE 2.0) FastPHASE, MACH, BEAGLE etc. But PHASE and Fast 

PHASE are most widely used. In case of genotype imputation number of tools uses Hidden 

Marker Model (HMM) at the backend. These basic approaches relies that if it is known that a 

particular SNP alleles are associated with a particular hyplotype in a population then it is 

possible to infer or impute genotype carried by the individual of same hyplotype for which it 

is not known. In case of HMM, the hidden state generates true hyplotypes in the population for 

which genotypes are known. Then HMM can be used to estimate the probability that an 

individual carries a particular genotype at a particular locus given the genotype data for that 

individual at other locus and rest of the population. Basically it takes advantage of a reference 

population which is densely genotyped at all SNP. The methods of imputation differ in their 

assumptions about the hidden states, the way state transition probabilities are derived, emission 

probability and the initial state probabilities. 

Association Analysis 

The association analysis can be taken up with well-defined phenotype of a population, and 

genotypes data set which is collected using sound techniques. The preliminary analysis of 

genome-wide association data is a series of single-locus statistic tests, examining each SNP 

independently for association to the phenotype. The statistical test conducted depends on a 

variety of factors, but first and foremost, statistical tests are different for quantitative traits 

versus case/control studies. Quantitative traits are generally analysed using generalized linear 

model (GLM) approaches and most commonly the Analysis of Variance (ANOVA), which is 

similar to linear regression with a categorical predictor variable of genotype classes. The null 

hypothesis of an ANOVA using a single SNP is that there is no difference between the trait 
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means of any genotype group. The assumptions of GLM and ANOVA are that (i) the trait is 

normally distributed, (ii) the trait variance within each group is the same, and (iii) the groups 

are independent. Dichotomous case/control traits are generally analysed using either 

contingency table methods or logistic regression. Contingency table tests examine and measure 

the deviation from independence that is expected under the null hypothesis that there is no 

association between the phenotype and genotype classes using Chi-square test and related 

Fisher’s exact test.  Logistic regression is an extension of linear regression where the outcome 

of a linear model is transformed using a logistic function that predicts the probability of having 

case status given a genotype class. Logistic regression is often the preferred approach because 

it allows for adjustment for clinical covariates (and other factors), and can provide adjusted 

odds ratios as a measure of effect size. Logistic regression has been extensively developed, and 

numerous diagnostic procedures are available to aid interpretation of the model. For both 

quantitative and dichotomous trait analysis (regardless of the analysis method), there are a 

variety of ways that genotype data can be encoded or shaped for association tests. The choice 

of data encoding can have implications for the statistical power of a test, as the degrees of 

freedom for the test may change depending on the number of genotype-based groups that are 

formed. Allelic association tests examine the association between one allele of the SNP and 

the phenotype. Genotypic association tests examine the association between genotypes (or 

genotype classes) and the phenotype. The genotypes for a SNP can also be grouped into 

genotype classes or models, such as dominant, recessive, multiplicative, or additive models. 

Each model makes different assumptions about the genetic effect in the data by assuming two 

alleles for a SNP, A and a, a dominant model (for A) assumes that having one or more copies 

of the A allele increases risk compared to a (i.e. Aa or AA genotypes have higher risk). The 

recessive model (for A) assumes that two copies of the A allele are required to alter risk, so 

individuals with the AA genotype are compared to individuals with Aa and aa genotypes. The 

multiplicative model (for A) assumes that if there is 3 x risk for having a single A allele, there 

is a 9 x risk for having two copies of the A allele. In this case, if the risk for Aa is k, the risk 

for AA is k2. The additive model (for A) assumes that there is a uniform, linear increase in risk 

for each copy of the A allele, so if the risk is 3 x for Aa, there is a 6x risk for AA. In this case, 

the risk for Aa is k and the risk for AA is 2k. A common practice for GWAS is to examine 

additive models only, as the additive model has reasonable power to detect both additive and 

dominant effects, but it is important to note that an additive model may be underpowered to 

detect some recessive effects. Rather than choosing one model a priori, some studies evaluate 

multiple genetic models coupled with an appropriate correction for multiple testing. 
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Genomic Selection 

(Practical) 

 

Genomic selection is emerging as an efficient and cost-effective method for estimating 

breeding values using molecular markers distributed over the entire genome. Basically, it 

involves estimating the simultaneous effects of all genes and combining the estimates to predict 

the total genomic estimated breeding value (GEBV). 

Let’s consider a column vector y containing the phenotypic values for a trait measured in n 

individuals. It is assumed that these observations are described adequately by a linear model 

with a p×1 vector of fixed effects () of environments/locations and a q×1 vector of random 

effects (u) of SNPs. In matrix form, 

where Var(u) = Kσ2
u and the residual variance is Var(e) = Iσ2

e . This class of mixed models, in 

which there is a single variance component other than the residual error, has a close relationship 

with ridge regression (ridge parameter λ = σ2
e /σ

2
u ). 

 

Genomic Selection using BGLR (Method: BayesA) 

library(BGLR) 

setwd("")  

x<-read.table(file="genotype.txt")  

dim(x)  

y<-as.matrix(read.table(file="phenotype.txt"))  

dim(y)  

n<-nrow(x)  

p<-ncol(x)  

X<-x[1:n,1:p]  

for(i in 1:p)  

{   

   X[,i]<-(X[,i]-mean(X[,i]))/sd(X[,i])  

}  

nIter=50000;  

burnIn=5000;  

thin=10;  

R2=0.5;  

S0=NULL;  

weights=NULL;  
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ETA<-list(list(X=X,model='BayesA'))  

fit_BA=BGLR(y=y,ETA=ETA,nIter=nIter,burnIn=burnIn,thin=thin,df0=5,S0=S0,weights=w

eights,R2=R2)  

fit_BA$yHat  

cor(fit_BA$yHat,y)  

 

Genomic Selection using BGLR (Method: BayesB) 

install.packages("BGLR") 

library(BGLR) 

setwd("")  

x<-read.table(file="genotype.txt")  

dim(x)  

y<-as.matrix(read.table(file="phenotype.txt"))  

dim(y)  

n<-nrow(x)  

p<-ncol(x)  

X<-x[1:n,1:p]  

for(i in 1:p)  

{   

   X[,i]<-(X[,i]-mean(X[,i]))/sd(X[,i])  

}  

nIter=50000;  

burnIn=5000;  

thin=10;  

R2=0.5;  

S0=NULL;  

weights=NULL;  

ETA<-list(list(X=X,model='BayesB',probIn=0.05))  

fit_BB=BGLR(y=y,ETA=ETA,nIter=nIter,burnIn=burnIn,thin=thin,df0=5,S0=S0,weights=w

eights,R2=R2)  

fit_BB$yHat  

cor(fit_BB$yHat,y) 

 

Genomic Selection using BGLR (Method: BayesB) 

library(BGLR) 

setwd("") 

x<-as.matrix(read.table(file="genotype.txt")) 

dim(x) 

y<-read.table(file="phenotype.txt") 

head(y) 
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dim(y) 

y<-y[,1] 

n<-nrow(x) 

p<-ncol(x) 

yNA<-y 

x<-scale(x,center=TRUE,scale=TRUE) 

x[1:10,1:10] 

G<-tcrossprod(x)/p 

G[1:10,1:10] 

ETA<-list(list(K=G,model='RKHS')) 

fm<-BGLR(y=yNA,ETA=ETA,nIter=50000, 

burnIn=5000,thin=10,S0=NULL,weights=NULL,R2=0.5) 

cor(fm$yHat,y) 

fm$yHat 

 

Genomic Selection by LASSO 

library(glmnet) 

library(Matrix) 

library(foreach) 

setwd("") 

x<-as.matrix(read.table(file="genotype.txt")) 

dim(x) 

y<-read.table(file="phenotype.txt") 

y=y[,1] 

head(y) 

fit<-glmnet(x,y,family="gaussian",alpha=1,nlambda=100) 

print(fit) 

cvfit=cv.glmnet(x,y,family="gaussian",type.measure="mse",nfolds=10) 

print(cvfit) 

z<-predict(cvfit,newx=x,s=c(cvfit$lambda.min)) 

cor(y,z) 

z=z[,1] 

 

Genomic Selection by Random Forest 

library(randomForest) 

setwd("") 

x<-as.matrix(read.table(file="genotype.txt")) 

dim(x) 

y<-as.matrix(read.table(file="phenotype.txt")) 

dim(y) 



High Dimensional Genome data Analysis by R and Open Source Tools CAAST-2019 

 

Page | 243 

myrf<-randomForest(x,y,mtry=1807,ntree=1000,type="mse",replace=TRUE,nodesize=50) 

myrf 

z<-predict(myrf,x) 

z 

cor(z,y) 

 

Genomic Selection by Ridge Regression 

library(glmnet) 

library(Matrix) 

setwd("") 

x<-as.matrix(read.table(file="genotype.txt")) 

dim(x) 

y<-read.table(file="phenotype.txt") 

y=y[,1] 

head(y) 

fit<-glmnet(x,y,family="gaussian",alpha=0,nlambda=100) 

print(fit) 

cvfit=cv.glmnet(x,y,family="gaussian",type.measure="mse",nfolds=10) 

print(cvfit) 

z<-predict(cvfit,newx=x,s=c(cvfit$lambda.min)) 

cor(y,z) 

z=z[,1] 

 

Steps involving in GWAS and genomic selection using rr-BLUP 

 Convert the genotype marker data into matrix form, where, the values are coded as -

1,0, 1 format. 

GWAS 
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The GWAS function mainly takes two arguments pheno and geno.  

 pheno  is a data frame where the first column is the line name. The remaining columns 

can be either a phenotype or the levels of a fixed effect. Any column not designated as 

a fixed effect is assumed to be a phenotype.  

 geno is data frame with the marker names in the first column. 

 The GWAS function returns a data frame where the first three columns are the marker 

name, chromosome, and position, and subsequent columns are the marker scores for 

the trait. 

 For the prediction of the marker effects, mixed.solve is used with the following 

important arguments. 

 

y Vector (n × 1) of observations. Missing values (NA) are omitted, along with the 

corresponding rows of X and Z.  

Z Design matrix (n × m) for the random effects. If not passed, assumed to be the 

identity matrix. 

K Covariance matrix (m × m) for random effects; must be positive semi-definite. If 

not passed, assumed to be the identity matrix. 

X Design matrix (n × p) for the fixed effects. If not passed, a vector of 1’s is used to 

model the intercept. X must be full column rank (implies β is estimable). 

method Specifies whether the full ("ML") or restricted ("REML") maximum-likelihood 

method is used. 
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 mixed.solve function returns a bunch of values including estimator of  σ2
u by $Vu, 

estimator of σ2
e by $Ve, Best Linear Unbiased Estimation (BLUE) of β by $beta, Best 

Linear Unbiased prediction (BLUP) of u by $u etc. 

 BLUP of u gives the effects of all SNPs.  

 By putting Z = M, and default value of K, marker effects can be obtained. Again by 

putting K = M and default value of Z, breeding values can be obtained 
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Protein Sequences to Structure 

(Practical) 
 

Step-1: Primary structure prediction 

 
1. Log onto Biology Workbench by using the URL http://workbench.sdsc.edu.  Though 

this is an open source tool, users need to register for a free account. For registration 

click on register link on the home page. 

 
 

2. If you are a registered user, please click on “Click to Enter the Biology Workbench 3.2”. 

3. Click on “Nucleic Tools”.  

4. In the resulted page under the default session of nucleic tools section select “Add New 

Nucleic Sequence”. 

5. Click on “Run”. 
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6. Download the mRNA sequence of Ferrodoxin enzyme of Arabidopsis thaliana from 

NCBI using the accession number M35868.1 in FASTA format as shown below in a 

separate window. 
 

>gi|166697|gb| |ATHFEDAA A.thalania ferrodoxin mRNA, complete cds 

GTCGACTGAAGTGTGAAGGTGGAGATTATGTATTCACTTGTTGATTTGGTATACATTCTATGTAAGGTTC 

AATTATTTACGTTATATAATTATAATGGAGTAATTTACAGTAATTGGGTTAAAATGGTTTGATTCGGTCA 

GGTTGATACGGTTTGGAAGTTAAACCCGGCCTAGATATGATGTTACAACCAGTCCACATCTTTTATGATT 

TTAGTGGAACAAACGAAGAGTTATTTAGACGATACAAACAAGGTCCGAATAAGTGTGAGCTGTCCCAAGT 

AAGACCACGTAATACTCACCTCAACAAGATAGTGTTCTTAAAGTGTGTCAAACACAATCACACACACACA 

AATCATAAAACACAAAGACGATAATCCATCGATCCACAGAATAGACGCCACGTGGTAGATAGGATTCTCA 

CTAAAAAGTTCTCACCTTTTAATCTTTCTCCACGCCATTTCCACAAGCCATAATCCTCAAAAATCTCAAC 

TTTATCTCCCAAAACACAAAACAAAAAAAAATGGCTTCCACTGCTCTCTCAAGCGCCATCGTCGGAACTT 

CATTCATCCGTCGTTCCCCAGCTCCAATCAGTCTCCGTTCCCTTCCATCAGCCAACACACAATCCCTCTT 

CGGTCTCAAATCAGGCACCGCTCGTGGTGGACGTGTCACAGCCATGGCTACATACAAGGTCAAGTTCATC 

ACACCAGAAGGTGAGCTAGAGGTTGAGTGTGACGACGACGTCTACGTTCTTGATGCTGCTGAGGAAGCTG 

GAATCGATTTGCCTTACTCTTGCCGTGCTGGTTCTTGTTCGAGCTGTGCTGGTAAAGTTGTGTCTGGATC 

TGTTGATCAGTCTGACCAGAGTTTCCTTGATGATGAACAGATTGGTGAAGGGTTTGTTCTCACTTGTGCT 

GCTTACCCTACCTCTGATGTTACCATTGAAACCCACAAAGAAGAAGACATTGTTTAAGCCTCACCTACTC 

ACCAGCTTTTGATGGTTTAAAAATCATGTCTTTATAAATTTCACATTTTGGGTTGAGTTTGTTGTTACTA 

AAAACTATTGTTATCTGTTGTTATTGTTCCTGGTTTGGCTCACCATCAATCGATGACATTTTAAACTATG 

CAACTGCAAATTCTGCAACACTTTCGATGAGAATCTAACATTATCGTTTAAACATTGGAAATACATTTTC 

TTGAAGTCTAGCTAGCTTTGGTTTGTAGTTCTTATTCTGAACTCAACAATCATCAAAGTATCAAGAAAAA 

TCCGATTTGCGAGCAATTGTGAAATCTTAGATTGATAAATTCTCTAGAAAGAACTATACATGTTATTTGT 

AGCTATAGAAGAAACTATGGAATCTTATACTCTAATTAAGCCCAAATGGCAAGAGAAGACATGAGTCCAG 

CTCCTAGGAACAACATTACATAAGATACAATTTGAAGCCTAAAGTTACACCTCATTTTTGTACTCAAGAA 

ATCAGCAGCTATGAGATCCACTAAAGCCATGTACACAAGAATTC 

 

7.  Copy the sequence in fasta format. 

8. In the Add New Nucleic Sequence page of Biology Workbench paste the sequence in 

“Sequence” text area and type “Ferrodoxin of Arabidopsis thaliana” in the “Label” 

text box or the fasta file downloaded from NCBI can also be uploaded by using its 

browse option. 

9. Click on save. The sequence label will come as list in the same page with a check box. 

10. Click on the check box to select the sequence.  
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11. Select the option “SIXFRAME-Generate & Import 6 Frame Translations on a NS” 

from the “Default Session” and click on the “Run” button. 

 

 

 
12. The resulted page provides a form for filling the parameters of SIXFRAME, i.e. 

translation table, sequence positions, Frames to translate etc. as shown below.  

 

13. Allowing the default values click on Submit button. 

14. The final result page gives all the six frame translations of the input mRNA sequence 

and information about the longest ORF is given at the bottom of the window 
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15. Save the protein sequence from the longest ORF in a separate text file as fer.txt for 

further analysis.  

 

Step-2: Secondary structure prediction 

 
1. To predict the secondary structure by GOR IV tool open the URL http://npsa-

pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_gor4.html 

2. Copy the sequence from fer.txt. 

3. Paste the sequence in the input window and name the sequence as “Ferrodoxin (A. 

thaliana)”   

http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_gor4.html
http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_gor4.html
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4. Click on Submit. 

 

5. This result page shows the output as follows giving the information about the helices, 

sheets and coils. 
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Step-3: Tertiary structure prediction 

(a) By ab-initio method 

By QUARK ONLINE 

1. To open the “QUARK ONLINE” open the URL http://zhanglab.ccmb.med. 

umich.edu/QUARK/. 

2. Paste the protein sequence of predicted protein from the file fer.txt sequence labeling 

the sequence as its name. 

3. Provide your email address in the appropriate box to which the result will be mailed.  

 
 

4. Click on “Run QUARK”. 

5. The results will be mailed to the email address provided after the completion of the job 

and can also be downloaded from the result page. 

6. Check your email ID to get the link of the PDB file. 
 

(b) By fold recognition method 

1. Open PHYRE from the URL 

http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index 

2. Paste the predicted sequence of Ferrodoxin of A. thaliana from fer.txt and label it as its 

name. 

3. Provide your email ID for the result. 

http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index
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4. Now click on “Phyre Search”. The result page will be displayed as follows showing 

the predicted secondary structure and the 10 best tertiary protein models based on fold 

recognition. 
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5. Check your email ID to get the coordinates of the best modeled structure, paste the 

same in a notepad and save the file in .pdb extension 

 
 

6. The saved PDB file can be visualized using Accelrys Discovery Studio 2.0. Further 

refinement and validation can be done by ModLoop and Rampage servers 

respectively. Both are discussed in “Step – 4”. 

 

(c) By Homology Modeling using MODELLER.  

Modeller requires three different input files which are to be prepared WITH OUT  

ANY ERROR as mentioned below.    

1. PDB file of known structure (*.pdb) 

2. Alignment file of target and template (*.ali)  

3. Python Script file for generating model (*.py)  

Softwares Required: Modeller 9v8, Accelrys DS Visualizer 2.0, ClustalX, Python 

2.6.5 
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   Preparing alignment and PDB file  

  

1. Open fer.txt change it in fasta format by adding “>Ferrodoxin” above the sequence 

and copy all. 

2. Open the NCBI BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi) and click on 

protein blast and paste the copied sequence in the sequence text area. 

3. On the BLAST page come to the option for changing database and set the database 

as “Protein Data Bank (PDB)”. 

4. Allowing the other default values click on BLAST. 

5. On the result page find out the most similar sequences by highest bit score and 

lowest e-value having a similarity of more than 35% with the query. 

6. In this case the template selected is  1PFD- Chain A, The Solution Structure Of 

High Plant Parsley [2fe-2s] Ferredoxin, Nmr, 18 Structures. 

7. Download the PDB structure of template i.e. 1PFD.pdb  from http://www.pdb.org 

and put the file in the same folder where fer.txt is present. 

8. Open the structure in Accelrys DS Visualizer 2.0 and delete all the chains except 

Chain A and then click on Sequence ->Show sequence 

9. Copy the sequence and paste it in fer.txt as follows and save. 

 
>Ferrodoxin 

MASTALSSAIVGTSFIRRSPAPISLRSLPSANTQSLFGLKSGTARGGRVTAMATYKVKFITPEGEL

EVEC 

DDDVYVLDAAEEAGIDLPYSCRAGSCSSCAGKVVSGSVDQSDQSFLDDEQIGEGFVLTCAAYPTSD

VTIE 

THKEEDIV 

>1PFD 

ESVHDFTVKDAKENDVDLSIFKGKVLLIVNVASKCGMTNSNYAEMNQLYEKYKDQGLEILAFPCNQ

FGEEEPGTNDQITDFVCTRFKSEFPIFDKIDVNGENASPLYRFLKLGKWGIFGDDIQWNFAKFLVN

KDGQVVDRY 

            fer.txt file       

10. Open ClustalX2 from start menu, choose Load Sequences of File menu and browse 

fer.txt. 

11. After uploading click “Alignment” then click “Output Format Options” where a sub-

window displayed on your monitor to adjust the parameters.  

a. Un-tick CLUSTAL format.  

b. Tick on NBRF/PIR format.  

c. Select Parameters output as “On” from the dropdown. 

d. Click on “OK”. 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.pdb.org/
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12. Click on “Do Complete Alignment” sub-menu from “Alignment” menu. 

13. Now  your  output  files  will  be  created  in  your  folder  (You can also change 

the location of output file from dialogue box appeared  by clicking on “Do 

Complete Alignment”).  

14. Open the output file, having .pir extension in word pad and save the file in .ali 

extension (e.g. fer.ali). 

15. Then do modifications in fer.ali file by observing standard file, which is given 

below.    

>P1;Ferrodoxin 

sequence:Ferrodoxin:::::::: 

MASTALSSAIVGTSFIRRSPAPISLRSLPSANTQSLFGLKSGTARGGRVTAMATYKVKFI 

TPEGELEVECDDDVYVLDAAEEAGIDLPYSCRAGSCSSCAGKVVSGSVDQSDQSFLDDEQ 

IGEGFVLTCAAYPTSDVTIETHKEEDIV 

* 

>P1;1PFD 

structureM:1PFD:1:A:96:A:THE SOLUTION STRUCTURE OF HIGH PLANT 

PARSLEY [2FE-2S] FERREDOXIN, NMR, 18 STRUCTURES:Petroselinum 

crispum :: 

----------------------------------------------------ATYNVKLI 

TPDGEVEFKCDDDVYVLDQAEEEGIDIPYSCRAGSCSSCAGKVVSGSIDQSDQSFLDDEQ 

MDAGYVLTCHAYPTSDVVIETHKEEEIV 

*          fer.ali file 

 2. Preparing Script files 

  

1.  Prepare the script file, as follows and save it as mod.py in the same folder 

         
# Homology modeling by the automodel class 

from modeller import *              # Load standard Modeller classes 

from modeller.automodel import *    # Load the automodel class 

 

log.verbose()    # request verbose output 

env = environ()  # create a new MODELLER environment to build this 

model in 

 

# directories for input atom files 

env.io.atom_files_directory = ['.', '1PFD.pdb'] 

 

a = automodel(env, 

              alnfile  = 'fer.ali',     # alignment filename 

              knowns   = '1PFD',              # codes of the 

templates 

              sequence = 'Ferrodoxin')              # code of the 

target 

a.starting_model= 1                 # index of the first model 

a.ending_model  =5 # index of the last model 

                                    # (determines how many models to 

calculate) 

a.make()                            # do the actual homology 

modeling 

         mod.py File (script file) 
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3. Running Modeller 

 

1. Double click on the mod.py file ( Installation of python is necessary) 

OR 

If python is not installed please follow the steps below 

 

a) Copy all three (*.ali, *.py & *.pdb) and paste it in C:\Program 

Files\Modeller9v10\bin.  

b) Then open Start->All Programs->Modeller9v10->Modeller  

c) in the command prompt type cd bin then press Enter and again type the command    

> mod9v10  mod.py  

2. Out put file will be created automatically in the same directory within 

approximately 3-5 min of analysis based on the length of the query sequence. 

3. Copy the output file having the extension .B99990001.pdb and paste it in your 

folder then save the same file as Ferrodoxin.pdb 

4. Visualize your 3D model created in Accelrys DS Visualizer 2.0. 

Step-4: Structure validation and Loop refinement 
 

1. Open the URL http://mordred.bioc.cam.ac.uk/~rapper/rampage.php for 

RAMPAGE server 

Note: This server validates the protein structure by Ramchandran plot and the plots for 

glycine and proline. 

 

 
 

2. Browse the PDB file in the file browser option and click on “SUBMIT TO 

RAMPAGE” button. 

http://mordred.bioc.cam.ac.uk/~rapper/rampage.php
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3. Check the result page for quality of the predicted structure under the “Evaluation of 

residues” heading. For individual residues plots can be checked. 
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4. If you are finding any residue present in the disallowed region then go for loop 

refinement using ModLoop server of Sali Lab 

(http://modbase.compbio.ucsf.edu/modloop/).  

  

5. Fill your email id in the first text box (this is optional) 

6. Fill “MODELIRANJE” in the license key text box 

7. Browse your PDB file in the file browser 

8. Give the range of 7-10 residues between which the residue number in disallowed 

region falls (eg. for 7give the range like 5::10::) in the text area for loop segments. 

9. Give any name for your model in the name your model text box and click on process. 

Note: It will be redirected to a page which will give you a JOB ID and a link to the result 

page. By clicking on that, it will again redirect to another page which will show the job 

status. After completion of your job at ModLoop server, a link to download the resulted 

PDB file will be provided on the same page.  
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10. Download the PDB file, save it and check it in Rampage server for the structure 

validation. 

11. All the models generated by ab-intio and fold recognition may also be refined and 

verified for comparison. 

12. Rename the model as "structure" after loop refinement. 

Note:- The above steps of loop refinement need to be repeated until 98% residues 

lied in the allowed region. 

 

Step-5: Energy minimization of loop refined structure 

1. Open URL http://www.yasara.org/minimizationserver.htm  

2. Give your mail ID and browse the PDB file which has already been loop refined 

then click "SUBMIT" button. 
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3. A confirmation mail followed by a job completion mail will be sent to the given 

email-ID. 

4. Click on the link from the mail mentioning job has been completed and save it. 

 

5. Open C:\yasara\yasara . 

6. Go to file and then load followed YASARA scene. It will open a window where  

sce file will be browsed. 
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7. It will show energy and score of starting and end model. 

 

8.  For further work file will be saved in pdb format. 
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Variant Analysis from RNA-Seq Data  

(Practical) 

 

(1) Data Generation /Collection  

• Step 1: Downloading SRA files from NCBI through command line 

wget -c -r ftp://ftp.ncbi.nlm.nih.gov/sra/sra-instant/reads/ByRun/sra/SRRfile -O 

/Anoop/SRA/file.sra 

• Step 2: Conversion of .sra files to fastq   

/sratoolkit.2.8.2-1-centos_linux64/bin/fastq-dump -A SRRfile.sra -O SRR.fastq  

(2) Data Pre-processing 

 

Step 1: Trim adapters using trimomatic tool 

java -jar /opt/software/Trimmomatic-0.32/trimmomatic-0.32.jar SE -phred33 -trimlog logfile 

/Anoop/fastq/SRR1772681.fastq  SRR1772681_trimmed.fastq 

ILLUMINACLIP:/opt/software/Trimmomatic0.32/adapters/TruSeq2-SE.fa:2:30:10 

LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36 

 

Step 2: Build index of reference genome  

Bowtie2 builds an index from the reference genome and then aligns the reads against the 

index. 

/opt/software/bowtie2-2.1.0/bowtie2-build RefSeq_data.fasta RefSeq_data.fasta _Index 

Step 3: Align the transcriptome with reference genome using bowtie 

The second step in our pipeline is to align the paired end reads to the reference genome. We 

are using the software bowtie2, which was created to align short read sequences to long 

sequences such as the scaffolds in a reference assembly. It requires at least two input files, a 

FASTQ file containing raw sequence data and a reference genome file in FASTA format.  

/opt/software/bowtie2-2.1.0/bowtie2-align -x RefSeq_data.fasta _Index  

SRR1772683_trimmed.fastq  -S sample.sam 

 

Step 4: Sam to bam conversion 

samtools view -bS  -o sample.bam sample.sam (input .sam file) 

samtools sort –O ‘bam’ sample.bam sample-sorted 
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Step 5: Merge two sample bam files (optional) 

samtools merge -O bam -@ 100  16_24_brown_merged.bam 16_sorted.bam 24_sorted.bam 

 

Step 6: Identify Variants (app: Calling SNPs INDELs with SAMtools BCFtools) 

samtools faidx  RefSeq_data.fasta 

 

Step 7: Run 'mpileup' to generate VCF format 

samtools mpileup -g -f my.fasta sample-sorted.bam -o sample.bcf 

 

Step 8: Verify Variants (app: SAMTOOLS-0.1.19 VCF-Utilities varFilter) 

Not all variants that we called are necessarily of good quality, so it is essential to have a 

quality filter step. The VCF includes several fields with quality information. The most 

obvious is the column QUAL, which gives us a Phred-scale quality score. 

bcftools filter --exclude 'QUAL<30' sample_variants.vcf |bcftools view -g ^miss > 

filtered_variants.vcf 

 

 

GATK (Genome Analysis Toolkit) 
(Variant Discovery in High Throughput Sequencing Data) 

Source link: https://software.broadinstitute.org/gatk/ 

Requirements: A Unix-style OS and Java 1.8, bcftools, bowtie, Picard tool. 

java -jar /opt/software/new1/GenomeAnalysisTK.jar --help 

java -jar /opt/software/new1/GenomeAnalysisTK.jar -T UnifiedGenotyper -R 

GCF_001704415.1_ARS1_genomic.fasta (reference file)  -I 

/SNP_analysis/set1_13_23/13test_RGadded.bam (input bam file) -o 

13_white_unifiedGenotyper_snps.raw.vcf 

Step1: 

java -jar /opt/software/picard.jar AddOrReplaceReadGroups I=44_47_F.bam  

RGID=Flower RGLB=Flower RGPL=Illumina RGPU=run_barcode RGSM=P_81 

O=44_47_F_picard.bam 

Step 2: Make dictionary of reference genome  

java -jar /opt/software/picard.jar CreateSequenceDictionary 

R=/Backup/rao1/sarika/CG_transcriptome_Trinity.fasta O=CG_transcriptome_Trinity.dict 

 

 

https://software.broadinstitute.org/gatk/
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Step 3: Make index file of reference genome  

opt/software/applications/samtools-1.2/samtools faidx 

/Backup/rao1/sarika/CG_transcriptome_Trinity.fasta 

Step 4 : reorder bam file  

java -jar /opt/software/picard.jar ReorderSam      I=44_47_F_picard.bam      

O=44_47_F_picard_reordered.bam      

R=/Backup/rao1/sarika/CG_transcriptome_Trinity.fasta     CREATE_INDEX=TRUE 

Step 5 : Sorting of bam file  

java -jar /opt/software/picard.jar SortSam SORT_ORDER=coordinate  

I=44_47_F_picard_reordered.bam O=44_47_F_picard_reordered_sorted.bam 

Step 6 : Indexing of bam file  

java -jar /opt/software/picard.jar BuildBamIndex I=44_47_F_picard_reordered_sorted.bam 

Sep 7 : Variant Discovery , run GATK 

java -jar /opt/software/new1/GenomeAnalysisTK.jar  -T UnifiedGenotyper -R 

/Backup/rao1/sarika/CG_transcriptome_Trinity.fasta -I 

44_47_F_picard_reordered_sorted.bam --filter_reads_with_N_cigar -o 

44_47_F_picard_reordered_sorted.bam.vcf 

Step 8 : Variant Statistics , run GATK 

opt/software/bcftools-1.6/bcftools stats SRR1772681_RGadded_reordered_sorted.vcf > 

SNP_stats.txt 
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Establishing Marker-QTL Linkage: Principles, Requirements 

and Methodologies 

 

 

The idea of using genetic markers to locate the individual quantitative trait locus (QTL) 

responsible for variation in quantitative traits goes back nearly to the beginning of modern 

genetics (Sax, 1923). With the availability of dense highly informative marker maps, it has 

recently become feasible to map genes or QTL accounting for part of the heritability of 

continuously distributed traits in experimental crosses as well as outbred populations. The 

most extensive comparative data set available at this point probably comes from QTL 

mapping efforts in plants. Interestingly, an unexpectedly high proportion of QTL affecting 

seed size, height, flowering and other complex traits do correspond among different taxa 

(Paterson, 1998). The process of QTL analysis requires 1) a suitable mapping population of 

phenotypically contrasting parents, 2) a linkage map of molecular markers, 3) mapping 

methods and software and 4) reliable phenotypic screening methods and generation of 

phenotypic data.  

Suitable mapping population  

It would be always advantageous using populations of early generations such as F2, F3, BC 

population etc, since these populations are amenable to make accurate predictions. However, 

the predictions made involving early generations would be misleading because of 

camouflaging effect in early generation of the major gene on many other minor genes. 

Continuous inbreeding to evolve recombinant inbred lines (RILs) can eliminate this 

camouflaging effect (Allard and Harding, 1963). Thus, RILs can remain as the best choice of 

population for QTL analysis. As an alternative doubled haploid (DH) lines can also be used. 

The inherent homozygosity prevailing in the individuals of these two populations make the 

RILs and DHLs as immortals and help to have as many replications as required by the 

experiment. 
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A linkage map of molecular markers  

Thoday (1961) emphasized that the main practical limitation in localizing QTL, seems to be 

the non-availability of suitable markers. This limitation was remedied by the construction of 

complete Restriction Fragment Length Polymorphism (RFLP) linkage maps, permitting 

systematic searches of an entire genome for QTL influencing a trait (Paterson et al 1988). 

The Amplified Fragment Length Polymorphism (AFLP) markers, (Vos et al., 1995), the 

markers of choice, remain the best alternative to construct the linkage maps in a very short 

period based on the existing RFLP maps (Maheswaran et al., 1997). Several linkage maps of 

molecular markers have been constructed exclusively for QTL analysis of various agronomic 

traits in crop species such as tomato, maize, rice and soybean.  

Mapping methods and software  

The basis of all QTL detection, regardless of the crop to which it is applied, is the 

identification of association between genetically determined phenotypes and specific genetic 

markers. The possible methods of analysis to detect QTL include: 1) single marker analysis 

(otherwise called as Marker-Trait (MT) Method) and 2) interval analysis.  

QTL mapping methods  

Conceptually, QTL mapping amounts to a three-step recipe: scan the entire genome with a 

dense collection of genetic markers; calculate an appropriate linkage statistic S(x) at each 

position x along the genome; and identify the regions in which the statistic S shows a 

significant deviation from what would be expected under independent assortment. The 

underlying assumptions of QTL mapping involving molecular markers are : 1) genes 

controlling quantitative traits are located on the genome, just like simple genetic markers, 2) 

if the markers cover a large portion of the genome then there is a large chance that some of 

the genes controlling the quantitative traits are linked with some of the genetic markers and 

3) if the genes and markers are segregating in a genetically defined population, then the 

linkage relationship among them may be resolved by studying the association between trait 

variation and marker segregation pattern. The association between quantitative trait variation 

and marker segregation pattern can be carried out by the following methods.  

Single marker analysis  

The single marker analysis (SMA) is a good start not only for learning QTL mapping, but 

also for practical data analysis. Single marker analysis is the method used in earliest studies 

on QTL mapping (Edwards et al., 1987; Weller et al., 1988). In this, one marker is involved 

at a time to find the QTL-marker association. The single marker analysis can be implemented 

as a simple t-test, ANOVA, linear regression, and likelihood ratio test and maximum 

likelihood estimation (Haley and Knott, 1992; Nienhuis et al., 1987; Wang et al., 1994). 
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SMA is simple in terms of data analysis and implementation. It can be performed using 

common statistical software. Gene orders and complete linkage map are not required.  

 
 

Figure 2: Association of a marker with a putative QTL 

 

The disadvantages of the single marker analysis are: 1) the putative QTL genotypic means 

and QTL positions are confounded. These confounding cause the estimated QTL effects to be 

biased and the statistical power to be low particularly when linkage map density is low and 2) 

QTL positions cannot be precisely determined, due to the non-dependence among the 

hypothesis tests for linked markers that confound QTL effect and position. Worked out 

examples to do single marker analysis to establish marker-QTL association are given by Liu, 

(1998) and some of the key references for single marker analysis are given below.  

 

The disadvantages of the single marker analysis are: 1) the putative QTL genotypic means 

and QTL positions are confounded. These confounding cause the estimated QTL effects to be 

biased and the statistical power to be low particularly when linkage map density is low and 2) 

QTL positions cannot be precisely determined, due to the non-dependence among the 

hypothesis tests for linked markers that confound QTL effect and position. Worked out 

examples to do single marker analysis to establish marker-QTL association are given by Liu, 

(1998) and some of the key references for single marker analysis are given below.  

Table 1: Methods to carry out Single Maker Analysis 

 
Interval analysis or Interval mapping  

Interval mapping (IM) is considered as a second level of QTL mapping. QTL mapping by 

this method requires prior construction of a marker genetic map. The interval mapping 
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approach is based on the joint frequencies of a pair of adjacent markers and a putative QTL 

flanked by the two markers. 

 
Figure 3: Association of a putative QTL to two flanking markers 

 

Interval mapping can be done by the following methods.  

 

Table 2: Methods employed in Interval Analysis 

 
 

The approach of interval mapping (IM), otherwise called as simple interval mapping (SIM) 

considers one QTL at a time in the model for QTL mapping. Therefore, SIM can bias 

identification and estimation of QTL when multiple QTL are located in the same linkage 

group (Zeng, 1994). SIM evaluates the association between the trait values and the expected 

contribution of hypothetical QTL (target QTL) at multiple analysis points between each pair 

of adjacent marker loci (the target interval). The expected QTL genotype is estimated from 

the genotypes of flanking marker loci and their distance from the QTL. Since there is usually 

uncertainty in the QTL genotype, the likelihood is sum of terms, one for each possible QTL 

genotype, weighted by the probability of that genotype given the genotypes of the flanking 

markers. The analysis point that yields the most significant association may be taken as the 

location of a putative QTL. Although IM represented a significant contribution to QTL 

analyses, it is based on the null hypothesis of no QTL: an incorrect assumption for 

quantitative traits.  

Multiple QTL Mapping 

Both SMA and IM are biased when multiple QTL are linked to the marker/interval being 

considered. To deal with multiple QTL problems, Jansen (1993) Rodolphe and Lefort (1993) 

and Zeng (1993) independently proposed the idea of combining SIM with multiple regression 

analysis in mapping. Multiple regression methods were integrated with IM to increase the 

probability of including all significant QTL in the model. This method was named as 
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composite interval mapping (CIM). Though CIM produced more accurate and precise 

estimates than IM, the inclusion of too many cofactors reduced the power to identify QTL 

relative to IM (Zeng, 1994; Utz and Melchinger, 1996). Kao et al. (1999) proposed new 

method viz, multiple interval mapping (MIM) to deal with the mapping of multiple QTL. 

When compared to SIM and CIM, MIM tends to be more powerful and precise in detecting 

QTL.  

Composite Interval Mapping (CIM) 

CIM evaluates the possibility of a target QTL at multiple analysis points across each 

intermarker interval. However, at each point it also includes the effect of one or more 

background markers, as defined in SIM. The inclusion of a background marker in the analysis 

helps in one of two ways, depending on whether the background marker and the target 

interval are linked. If they are not linked, inclusion of the background marker makes the 

analysis more sensitive to the presence of a QTL in the target interval. If they are linked, 

inclusion of the background marker may help to separate target QTL from other linked QTL 

on the far side of the background marker (Zeng, 1993, 1994). 

Multiple Interval Mapping (MIM) 

MIM method uses multiple marker intervals simultaneously to fit multiple putative QTL 

directly in the model for mapping QTL. The MIM method is based on Cockerham’s model 

for interpreting genetic parameters and the method of maximum likelihood for estimating 

genetic parameters. With the MIM approach, the precision and power of QTL mapping could 

be improved. Also, epistasis between QTL, genotypic values of individuals and heritabilities 

of quantitative traits can be readily estimated and analyzed.  

Power, precision and accuracy of QTL mapping  

QTL analysis includes three stages: detection, mapping and fine mapping. Detection and 

mapping (estimating a chromosomal location) are often accomplished simultaneously, but 

they are logically and statistically distinct (Beavis, 1998).  

Power of detection 

Power is the probability of identifying a QTL of known magnitude, given the predetermined 

frequency of false positive association (p). Each QTL detection experiment provides an 

estimate of the strength of a QTL. In some experiments, the QTL will be over estimated, in 

others, underestimated. This variability may determine whether the QTL appears to be 

statistically significant, that is, whether the QTL is detected in that experiment. The power of 

a QTL detection experiment, at a given level of statistical significance depends upon the 

strength of the QTL and the number of progeny in the population.  
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The strength of the QTL can be determined based on the fraction of the total trait variance 

that it explains. Those, which explain over 20 percent of the variance, are strong QTL; traits 

controlled by such QTL can be considered almost Mendelian. At the other extreme, weak 

QTL, which explain 1 percent or less of the trait variance, require at least a thousand progeny 

to detect them with high power. Detection of such QTL is routinely feasible. Between those 

extremes are moderate QTL, which can be detected with crosses of reasonable size but not 

necessarily at high power. 

Precision of mapping 

Precision is a measure of the dispersion of repeated independent estimates of genomic 

positions or genetic effects of the alleles at QTL and reported by inverse measures such as 

standard errors or confidence intervals. The size of a confidence interval is expected to be 

inversely proportional to the number of progeny in the mapping population and to the square 

of the strength of the QTL. Weak QTL, as defined above, can be assigned to a chromosome, 

but not located with more precision. Strong QTL can be located by a large backcross or 

intercross in confidence intervals as small as 11 cM. For strong QTL, precision is limited by 

the number of recombinants in backcross or intercrosses and QTL can be located more 

precisely in advanced intercrosses (Darvasi, 1998).  

The power and precision of QTL mapping depends on the test statistic derived based on the 

asymptotic distribution. When single marker analysis is involved in QTL mapping, ‘t’ and ‘F’ 

statistics are used to assess the power and precision of contrasting marker genotypic classes 

(Soller et al., 1976; McMillan and Robertson, 1974).  

Accuracy of mapping 

Accuracy is a measure of how close the estimates are to the true values. In practice, acuracy 

is very difficult to estimate for experimental results because the true values are unknown.  

Test statistic for claiming QTL detection  

The QTL, by definition, are merely significant statistical associations. These significant 

associations are detected by having suitable test statistic, otherwise called as ‘critical value’ 

or ‘threshold statistic’. The reliability and efficiency of the QTL mapping depend 

considerably on the validity and relevance of the statistical tests used to detect the presence of 

QTL. Clear statistical guidelines for the interpretation of linkage results are needed to avoid a 

flood of false positive (presence of a QTL when actually it is not present) claims. At the same 

time, an overly cautions approach runs the risk of causing true hints of linkage to be missed 

(false negative).  

‘Critical value’ or ‘threshold statistic’ is a limit fixed to eliminate the detection of spurious 

QTL and QTL with smaller effects. Fixing a suitable threshold statistic for each population 
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size will help in improving the power of QTL mapping. In using single marker analysis, test 

of significance is used as threshold statistic. When analysis of variance is used as method to 

detect QTL, ‘F’ value is used as threshold statistic. In the same manner, for interval mapping 

LOD score is used as a threshold statistic. The LOD score summarizes the strength of 

evidence in favour of the existence of QTL with an effect at a position; if the LOD score 

exceeds a predetermined threshold (usually LOD score of 3.0 is fixed), the presence of a QTL 

is inferred. For estimating the LOD score, one has to have the odds ratio, which is the ratio 

between chance of QTL at a given site and chance of no QTL at a given site.  

Threshold statistic adopted for different methods may not have the same strength, resulting in 

differences in detecting the QTL. Under the circumstance, the threshold statistic of each 

method has to be evolved to eliminate the discrepancies between methods. Churchill and 

Deorge (1994) evolved a method to relate the LOD score and F statistic of ANOVA.  

LOD = [(n1
 
+ n2)/2] log 10 [1+ (T2/ n

1 
+ n

2
-2)] 

where, T2
 

is F statistic of ANOVA and (n1
 
+ n2) is sample size. 

When using any statistic of any method, as a criterion in model selection for QTL detection, 

it is very important to determine the appropriate critical value or threshold value for claiming 

QTL detection such that correct statistical interference about QTL parameters can be made.  

Lander and Botsterin (1989) suggested using the Bonferroni argument for the sparse map 

case and Orenstein-uhlenback diffusion for the dense map case to determine the critical value. 

Generally, it has been pointed out that the critical value might need to be adjusted for the 

number and size of interval, different levels of heritability, different number of multiple 

linked or unlinked and unlinked in the same or opposite direction (Lander and Botstein, 1989; 

Jansen, 1993; Zeng, 1994). Visscher and Haley (1996) suggested that the critical value should 

be reduced after a QTL of large effect has been detected. However, most of this information 

is not available before mapping and consequently the answers to most of the above questions 

remain unknown. Churchill and Deorge (1994) therefore suggested using permutation test for 

determining an appropriate critical value for specific data sets.  

The permutation test (Churchill and Doerge, 1994; Deorge and Churchill, 1996) is a method 

for establishing the significance of the LRS generated by single locus association or interval 

mapping. In this test, the trait values are randomly permitted among the progeny, destroying 

the relationship between the trait values and the genotypes of the marker loci in the observed 

data, QTL parameters and LRS value are estimated for each permuted data set at regular 

intervals throughout the genome (or some part of the genome) and the maximum LRS is 

recorded. This procedure is repeated numerous times, giving a distribution of LRS values 

expected if there were no QTL linked to any of the marker loci. An empirical p-value can be 

obtained for a given LRS by computing the proportion of permuted data sets for which LRS 
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exceeds the LRS for the observed data. Alternatively, values at appropriate percentile points 

of the empirical distribution can be used as LRS threshold values to establish significance of 

the observed LRS. For example, the 95th percentile value is that which would establish 

significance corresponding to the usual criterion of p = 0.05. Churchill and Doerge (1994) 

recommended at least 1000 permutations for establishing a threshold for p = 0.05. 

Permutation tests, therefore, can be time consuming and may be impractical on some 

computers.  

Fixing a correct critical value to detect QTL is still a debatable issue in QTL mapping. 

Having a uniform stringent standard such as a critical value based on a whole genome search 

or a critical value based on an infinitely dense map is not acceptable since some times QTL 

mapping involves few markers (or few chromosomal regions) or a sparse map. Under the 

circumstance, a hierarchical search – in which one performs a genome scan with a sparse map 

and then follows up interesting regions with a denser map as suggested by Lander and 

Kruglyak (1999) is an efficient study design. 

Lander and Kruglyak (1995) proposed the following classification based on the number of 

times that one would expect to see a result at random in a dense, complete genome scan: 

 Suggestive linkage: Statistical evidence that would be expected to occur one time at random 

in a genome scan.  

Significant linkage: statistical evidence expected to occur 0.05 times in a genome scan (that 

is, with probability 5 percent).  

Highly significant linkage: statistical evidence expected to occur 0.001 time in a genome 

scan.  

Confirmed linkage: significant linkage from one or a combination of initial studies that has 

subsequently been confirmed in a further sample, preferably by an independent group of 

investigators. For confirmation, a nominal p value of 0.01 should be required. 

Software  

Compared to general statistical analysis of biological data, statistical analysis for the study of 

genes controlling complex traits has the following characteristics: 1) many repeated analysis 

in one task, 2) lack of standard distribution for some test statistics and 3) complexity of 

models used in QTL mapping. For using these software packages a known linkage map is 

needed for either running the programmes or interpreting results. Several companion 

packages are also available for linkage map construction.  

These packages have some similarities such as: 1) interface is not user friendly compared to 

some commercial software, 2) user support is also limited due to their non-commercial status, 
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3) statistical models which can be built using the software are limited and 4) speed of model 

building is high for the models which the software can build. The details on some of the 

software routinely employed in QTL mapping are given below.  

MAPMAKER/QTL (Lincoln et al., 1992b) is a widely used program for UNIX or DOS 

operating systems and is the original QTL mapping program intended for distribution. It can 

perform composite interval mapping, although the documentation does not use that term; but 

it cannot perform permutation tests. It requires the companion program MAPMAKER/EXP 

(Lander et al., 1987; Lincoln et al., 1992a) to format data and to calculate marker maps.  

QTL Cartographer (Basten et al. 1994, 1997) is a suite of programs for DOS, UNIX, or Mac 

OS. They are designed to be used in sequence, each accepting input in the form of text files 

and storing its output in text files for the next program. This suite offers several variations of 

CIM with automatic selection of background loci. It also has provision for estimating 

confidence intervals by resampling. QTL Cartographer, MapQTL, and PLABQTL are similar 

in many respects. QTL Cartographer is distinguished by its menu-driven interface, more 

detailed documentation, resampling methods and the lack of a licensing fee. 

Map Manager QT (Manly and Elliott, 1991; Manly, 1997) is a program for Mac OS 

distinguished by its graphical user interface for data entry, editing, manipulation, and display. 

It is designed to be used either as a mapping program itself or as a data-preparation program 

for other mapping programs.  

QGene (Nelson, 1997) is a commercial program for Mac OS whose strength is a variety of 

graphics for displaying trait data and relationships among marker genotypes and between 

traits and marker genotypes. These functions make it uniquely useful for rapid exploration of 

data. However, it does not perform CIM.  

MapQTL (van Ooijen and Maliepaard, 1996) is a commercial program for several operating 

systems that is distinguished by its ability to map QTL in populations derived from non-

inbred parents, in which both markers and QTL may have more than two alleles. It also offers 

a nonparametric form of single-locus association, the Kruskal-Wallis rank sum test, 

appropriate for data with distributions far from normal.  

PLABQTL (Utz and Melchinger, 1996) is a script-driven program for DOS or AIX that is 

designed to analyze automatically a dataset at increasing levels of complexity in successive 

runs. The final level is capable of evaluating the effect of different environments and the 

effect of interactions between QTL and environmental effects.  

MQTL (Tinker and Mather, 1995a, 1995b) is a program for DOS or Sun OS that uses a 

simplified form of composite interval mapping (sCIM) for mapping QTL in large data sets 
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derived from multiple environments. Like PLABQTL, it will estimate environmental effects 

and QTL-environment interactions.  

Multimapper (Sillanpaa, 1998) is a program for UNIX that implements a Bayesian method 

for building multi-QTL models automatically. Multimapper is designed to map QTL within a 

single linkage group and it produces a plot of QTL probability as a function of map distance. 

This type of plot seems intuitively more interpretable than the plot of the likelihood ratio 

statistic or LOD score produced by other programs. However, it seems to be the most suited 

to the analysis of single chromosomes for which other programs have indicated the 

possibility of multiple QTL. Multimapper is designed to work with QTL Cartographer as a 

companion program.  

Epistat (Chase et al., 1997) is a program for DOS designed primarily for the detection and 

analysis of interactions between QTL. It does not perform interval mapping and therefore 

does not require mapped markers. It is an interactive program, displaying graphic results in 

response to single-keystroke commands.  

The QTL Cafe is a program being developed in Java to make it available for multiple 

computer platforms. It is currently available as an applet that runs in a Java-enabled World 

Wide Web browser. 

Available public domain software packages for studying genes controlling complex traits are 

not adequate for development of genomic research on complex traits in terms of user 

interface, flexibility and user support. Software packages with commercial quality are needed 

to accommodate the growing needs of data analysis and management in genomic research. 

This is especially true for study of genes controlling complex traits.  

Reliable phenotypic screening and generation of phenotypic data  

To adequately explore the QTL during the mapping phase, the phenotype must be evaluated 

in replicated trials in different environments. Moreover, phenotypic screening should be done 

based on reliable and reproducible screening methods. Large data sets can be generated by 

the coordinated efforts of several groups, providing valuable information about genes 

governing quantitative characters in a range of environments. Such data will provide 

information about the magnitude of the effect of different QTL and whether there is 

interaction between QTL and environment.  

The issues related to population development and construction of linkage maps do not pose 

many problems with the existing level of knowledge. Though, issues related to methods for 

detecting QTL, software for QTL analysis are having problems such as inaccurate detection 

of QTL (occurrence of false positives and false negatives), the issues associated with 

phenotypic screening pose severe threat to an emerging tool of plant breeding.  
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Most agronomically important characters involve multiple genes that interact with each other 

and with the environment in complex ways. This creates a situation wherein QTL can be 

detected only some of the time. This necessitates designing of experiments to qualify the 

value of specific QTL. To adequately explore the value of QTL, the phenotypes must be 

evaluated in well-replicated trials in different environments. The conduct of replicated trials 

warrants a suitable population which can be effectively replicated. Here comes the problem 

of developing an immortal population such as RILs and DHLs. Developing both kinds of 

populations and their maintenance is a cumbersome process even by a well established 

breeding institute. QTL are hypothetical genes based on statistical inference. Genetic effects 

used in QTL mapping could have very little biological meaning. To have a biological 

meaning of QTL mapping the selection of traits to be phenotyped is very important. More 

over, phenotype of several traits is not amenable for QTL dissection.  

Conclusion  

QTL, otherwise described as hypothetical genes based on statistical inferences, have very 

little biological meaning. To date the knowledge on QTL mapping is enormous. However, the 

accrued knowledge does not have immediate solutions to the problems associated with QTL 

mapping. Some of the approaches such as adopting metabolic genetic model (Byrne et al., 

1996; Mitchell-Olds and Pedersen, 1998) and candidate gene concept (Long and Longly, 

1999) in conjunction with Single Nucleotide Polymorphism (SNP) may make the QTL 

mapping approach as biologically meaningful one. Issues related to genetic mapping of QTL 

are well reviewed by Liu (1998), Lynch and Walsh (1997) and Paterson (1998). 
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Planning and Designing of Agricultural Experiments 
 

 

An experiment is usually associated with a scientific method for testing certain phenomena. 

An experiment facilitates the study of such phenomena under controlled conditions and thus 

creating controlled condition is an essential component. Scientists in the biological fields who 

are involved in research constantly face problems associated with planning, designing and 

conducting experiments. Basic familiarity and understanding of statistical methods that deal 

with issues of concern would be helpful in many ways. Researchers who collect data and then 

look for a statistical technique that would provide valid results will find that there may not be 

solutions to the problem and that the problem could have been avoided first by a properly 

designed experiment. Obviously it is important to keep in mind that we cannot draw valid 

conclusions from poorly planned experiments. Second, the time and cost involved in many 

experiments are enormous and a poorly designed experiment increases such costs in time and 

resources. For example, an agronomist who carries out fertilizer experiment knows the time 

limitation of the experiment. He knows that when seeds are to be planted and harvested. The 

experimenter plot must include all components of a complete design. Otherwise what is 

omitted from the experiment will have to be carried out in subsequent trials in the next 

cropping season or next year. The additional time and expenditure could be minimized by a 

properly planned experiment that will produce valid results as efficiently as possible. Good 

experimental designs are products of the technical knowledge of one's field, an understanding 

of statistical techniques and skill in designing experiments. 

Any research endeavor may entail the phases of Conception, Design, Data collection, 

Analysis and Dissemination. Statistical methodologies can be used to conduct better scientific 

experiments if they are incorporated into entire scientific process, i.e., From inception of the 

problem to experimental design, data analysis and interpretation. When planning experiments 

we must keep in mind that large uncontrolled variations are common occurrences. 

Experiments are generally undertaken by researchers to compare effects of several conditions 

on some phenomena or in discovering an unknown effect of particular process. An 

experiment facilitates the study of such phenomena under controlled conditions. Therefore 

the creation of controlled condition is the most essential characteristic of experimentation. 

How we formulate our questions and hypotheses are critical to the experimental procedure 

that will follow. For example, a crop scientist who plants the same variety of a crop in a field 

may find variations in yield that are due to periodic variations across a field or to some other 

factors that the experimenter has no control over. The methodologies used in designing 

experiments will separate with confidence and accuracy a varietal difference of crops from 

the uncontrolled variations. 
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The different concepts in planning of experiment can be well explained through chapati 

tasting experiment. 

Consider an experiment to detect the taste difference in chapati made of wheat flour of c306 

and pv 18 varieties. The null hypothesis we can assume here is that there is no taste 

difference in chapatis made of c306 or pv18 wheat flours. After the null hypothesis is set, we 

have to fix the level of significance at which we can operate. The pv18 is a much higher 

yielding variety than c306. Hence a false rejection may not help the country to grow more 

pv18 and the wheat production may decrease while a false acceptance may give more 

production of pv18 wheat and the consumption may be less or practically nil. Thus the false 

acceptance or false rejection are of practically equal consequence and we agree to choose the 

level of significance at α = 0.05. Now to execute the experiment, a subject is to be found 

with extrasensory powers who can detect the taste differences. The colours of c306 and pv18 

are different and anyone, even without tasting the chapatis, can distinguish the chapatis of 

either kind by a mere glance. Thus the taster of the chapatis has to be blindfolded before the 

chapatis are given for tasting. Afterwards, the method is to be decided in which the 

experiment will be conducted. The experiment can be conducted in many ways and of them 

three methods are discussed here: 

 Give the taster equal number of chapatis of either kind informing the taster about it. 

 Give the taster pairs of chapatis of each kind informing the taster about it. 

 Give the taster chapatis of either kind without providing him with any information. 

Let us use 6 chapatis in each of these methods. 

Under first method of experimentation, if the null hypothesis is true, then the experimenter 

cannot distinguish the two kinds of chapaties and he will randomly select 3 chapatiS out of 6 

chapaties given to him, as made of pvl8 wheat. In that case, all correct guesses are made if 

selection exactly coincides with the exactly used wheat variety and the probability for such an 

occurrence is: 

  

  05.0
20

11
6
3


 

Under second method,the pv18 wheat variety chapaties are selected from each pair given if 

the null hypothesis is true. Furthermore, independent choices are made of pv18 variety 

chapaties from each pair. Thus the probability of making all correct guesses is 

1/(2)3 = 1/8 = 0.125. 

In third method the experimenter has to make the choice for each chapati and the situation is 

analogous at calling heads or tails in a coin tossing experiment. The probability of making all 

correct guesses would then be: 
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1/26 = 1/64 = .016. 

If the experimenter makes all correct guesses in third method as its probability is smaller than 

the selected  = 0.05, we can reject the null hypothesis and conclude that the two wheat 

varieties give different tastes at chapaties. In other methods the probability of making all 

correct guesses does not exceed  = 0.05 and hence with either method, we cannot   reject    

the   null    hypothesis even if all correct guesses are made. 

However, if 8 chapaties are used by first method and if the taster guesses all of them, we can 

reject the null hypothesis, at 0.05 level of significance, as the probability of making all 

correct guesses would then be 

  56
11

8
3


 which is smaller than 0.05. 8 chapaties will 

not enable us to reject the null hypothesis even if all correct guesses are made by second 

method as the probability of making all correct guesses is 06.0
16

1

4

1
4









 it is easy to see 

that if 10 chapaties are given by second method and if all correct guesses are made, then we 

can reject the null hypothesis at 0.05 level of significance. Not to unduly influence the taster 

in making guesses, we should also present the chapaties in a random order rather than 

systematically presenting them for tasting. 

The above discussed chapati tasting experiment brings home the following salient features of 

experimentation: 

 All the extraneous variations in the data should be eliminated or controlled excepting 

the variations due to the treatments under study. One should not artificially provide 

circumstances for one treatment to show better results than others. 

 Far a given size of the experiment, though the experiment can be done in many ways, 

even the best results may not turn out to be significant with some designs, while some 

other design can detect the treatment differences. Thus there is an imperative need the 

choose the right type of design, before the commencement of the experiment, lest the 

results may be useless. 

 If for some specific reasons related to the nature .of the experiment, a particular 

method has to be used in experimentation, then adequate number of replications of 

each treatment have to be provided in order to get valid inferences.  

 The treatments have to be randomly allocated to the experimental units. 

The terminologies often used in planning and designing of experiments are listed below. 

Treatment 

Treatment refers to controllable quantitative or qualitative factors imposed at a certain level 
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by the experimenter. For an agronomist several fertilizer concentrations applied to a 

particular crop or a variety of crop is a treatment. Similarly, an animal scientist looks upon 

several concentrations of a drug given to animal species as a treatment. In agribusiness we 

may look upon impact of advertising strategy on sales a treatment. To an agricultural 

engineer, different levels of irrigation may constitute a treatment. 

Experimental Unit 

An experimental unit is an entity that receives a treatment e.g., for an agronomist or 

horticulturist it may be a plot of a land or batch of seed, for an animal scientist it may be a 

group of pigs or sheep, for a scientist engaged in forestry research it may be different tree 

species occurring in an area, and for an agricultural engineer it may be manufactured item. 

Thus, an experimental unit maybe looked upon as a small subdivision of the experimental 

material, which receives the treatment. 

Experimental Error 

Differences in yields arising out of experimental units treated alike are called Experimental 

Error. 

Controllable conditions in an experiment or experimental variable are terms as a factor. For 

example, a fertilizer, a new feed ration, and a fungicide are all considered as factors. Factors 

may be qualitative or quantitative and may take a finite number of values or type. 

Quantitative factors are those described by numerical values on some scale. The rates of 

application of fertilizer, the quantity of seed sown are examples of quantitative factors. 

Qualitative factors are those factors that can be distinguished from each other, but not on 

numerical scale e.g., type of protein in a diet, sex of an animal, genetic make up of plant etc. 

While choosing factors for any experiment researcher should ask the following questions, 

like What treatments in the experiment should be related directly to the objectives of the 

study? Does the experimental technique adopted require the use of additional factors? Can 

the experimental unit be divided naturally into groups such that the main treatment effects are 

different for the different groups? What additional factors should one include in the 

experiment to interact with the main factors and shed light on the factors of direct interest? 

How desirable is it to deliberately choose experimental units of different types? 

Basic Principles of Design of Experiments 

Given a set of treatments which can provide information regarding the objective of an 

experiment, a design for the experiment, defines the size and number of experimental units, 

the manner in which the treatments are allotted to the units and also appropriate type and 

grouping of the experimental units. These requirements of a design ensure validity, 

interpretability and accuracy of the results obtainable from an analysis of the observations. 
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These purposes are served by the principles of:  

 Randomization 

 Replication 

 Local (Error) control 

Randomization 

After the treatments and the experimental units are decided the treatments are allotted to the 

experimental units at random to avoid any type of personal or subjective bias, which may be 

conscious or unconscious. This ensures validity of the results. It helps to have an objective 

comparison among the treatments. It also ensures independence of the observations, which is 

necessary for drawing valid inference from the observations by applying appropriate 

statistical techniques. 

Depending on the nature of the experiment and the experimental units, there are various 

experimental designs and each design has its own way of randomization. Various speakers 

while discussing specific designs in the lectures to follow shall discuss the procedure of 

random allocation separately. 

Replication 

If a treatment is allotted to r experimental units in an experiment, it is said to be replicated r 

times. If in a design each of the treatments is replicated r times, the design is said to have r 

replications. Replication is necessary to 

 Provide an estimate of the error variance which is a function of the differences among 

observations from experimental units under identical treatments. 

 Increase the accuracy of estimates of the treatment effects. 

Though, more the number of replications the better it is, so far as precision of estimates is 

concerned, it cannot be increased infinitely as it increases the cost of experimentation. 

Moreover, due to limited availability of experimental resources too many replications cannot 

be taken. 

The number of replications is, therefore, decided keeping in view the permissible expenditure 

and the required degree of precision. Sensitivity of statistical methods for drawing inference 

also depends on the number of replications. Sometimes this criterion is used to decide the 

number of replications in specific experiments. 
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Error variance provides a measure of precision of an experiment, the less the error variance 

the more precision. Once a measure of error variance is available for a set of experimental 

units, the number of replications needed for a desired level of sensitivity can be obtained as 

below. 

Given a set of treatments an experimenter may not be interested to know if two treatment 

differ in their effects by less than a certain quantity, say, d. In other words, he wants an 

experiment that should be able to differentiate two treatments when they differ by d or more. 

The significance of the difference between two treatments is tested by t-test where    

 ,
r/s2

yy
t

2

ji 
  

Here, ,y i  and jy  are the arithmetic means of two treatment effects each based on r 

replications, s2 is measure of error variation. 

Given a difference d, between two treatment effects such that any difference greater than d 

should be brought out as significant by using a design with r replications, the following 

equation provides a solution of r. 

,
r/s2

d
t

2
   

  2

2

2

0 s2x
d

t
r                         …(1) 

where 0t is the critical value of the t-distribution at the desired level of significance, that is, 

the value of t at 5 or 1 per cent level of significance read from the t-table. If s2 is known or 

based on a very large number of observations, made available from some pilot pre-

experiment investigation, then t is taken as the normal variate. If s2 is estimated with n degree 

of freedom (d.f.) then t0 corresponds to n d.f. 

When the number of replication is r or more as obtained above, then all differences greater 

than d are expected to be brought out as significant by an experiment when it is conducted on 

a set of experimental units which has variability of the order of s2. For example, in an 

experiment on wheat crop conducted in a seed farm in Bhopal, to study the effect of 

application of nitrogen and phosphorous on yield a randomized block design with three 

replications was adopted. There were 11 treatments two of which were (i) 60 Kg/ha of 

nitrogen (ii) 120 Kg/ha of nitrogen. The average yield figures for these two application of the 

fertilizer were 1438 and 1592 Kg/ha respectively and it is required that differences of the 

order of 150 Kg/ha should be brought out significant. The error mean square (s2) was 
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12134.88. Assuming that the experimental error will be of the same order in future 

experiments and t0 is of the order of 2.00, which is likely as the error d.f. is likely to be more 

than 30 as there are 11 treatments; Substituting in (1), we get: 

  .)approx( 4
150

88.2134x2x2

d

st2
r

2

2

2

22

0   

Thus, an experiment with 4 replications is likely to bring out differences of the order of 150 

Kg/ha as significant. 

Another criterion for determining r is to take a number of replications which ensures at least 

10 d.f. for the estimate of error variance in the analysis of variance of the design concerned 

since the sensitivity of the experiment will be very much low as the F test (which is used to 

draw inference in such experiments) is very much unstable below 10 d.f. 

Local Control 

The consideration in regard to the choice of number of replications ensure reduction of 

standard error of the estimates of the treatment effect because the standard error of the 

estimate of a treatment effect is rs /2 , but it cannot reduce the error variance itself. It is, 

however, possible to devise methods for reducing the error variance. Such measures are 

called error control or local control. One such measure is to make the experimental units 

homogenous. Another method is to form the units into several homogenous groups, usually 

called blocks, allowing variation between the groups. 

A considerable amount of research work has been done to divide the treatments into suitable 

groups of experimental units so that the treatment effect can be estimated more precisely 

Extensive use of combinatorial mathematics has been made for formation of such group 

treatments. This grouping of experiment units into different groups has led to the 

development of various designs useful to the experimenter. We now briefly describe the 

various term used in designing of an experiment 

Blocking 

It refers to methodologies that form the units into homogeneous or pre-experimental subject-

similarity groups. It is a method to reduce the effect of variation in the experimental material 

on the Error of Treatment of Comparisons. For example, animal scientist may decide to group 

animals on age, sex, breed or some other factors that he may believe has an influence on 

characteristic being measured. Effective blocking removes considerable measure of variation 

nom the experimental error. The selection of source of variability to be used as basis of 

blocking, block size, block shape and orientation are crucial for blocking. The blocking factor 

is introduced in the experiment to increase the power of design to detect treatment effects. 
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The importance of good designing is inseparable from good research (results). The following 

examples point out the necessity for a good design that will yield good research. First, a 

nutrition specialist in developing country is interested in determining whether mother's milk 

is better than powdered milk for children under age one. The nutritionist has compared the 

growth of children in village A, who are all on mother's milk against the children in village B, 

who use powdered milk. Obviously, such a comparison ignores the health of the mothers, the 

sanitary-conditions of the villages, and other factors that may have contributed to the 

differences observed without any connection to the advantages of mother's milk or the 

powdered milk on the children. A proper design would require that both mother's milk and 

the powdered milk be alternatively used in both villages, or some other methodology to make 

certain that the differences observed are attributable to the type of milk consumed and not to 

some uncontrollable factor. Second, a crop scientist who is comparing 2 varieties of maize, 

for instance, would not assign one variety to a location where such factors as sun, shade, 

unidirectional fertility gradient, and uneven distribution of water would either favor or 

handicap it over the other. If such a design were to be adopted, the researcher would have 

difficulty in determining whether the apparent difference in yield was due to variety 

differences or resulted from such factors as sun, shade, soil fertility of the field, or the 

distribution of water. These two examples illustrate the type of poorly designed experiments 

that are to be avoided. 

Analysis of Variance 

Analysis of Variance (ANOVA) is a technique of partitioning the overall variation in the 

responses into different assignable sources of variation, some of which are specifiable and 

others unknown. Total variance in the sample data is partitioned and is expressed as the sum 

of its non-negative components is a measure of the variation due to some specific 

independent source or factor or cause. ANOVA consists in estimation of the amount of 

variation due to each of the independent factors (causes) separately and then comparing these 

estimates due to ascribable factors (causes) with the estimate due to chance factor  the latter 

being known as experimental error or simply the error. 

Total variation present in a set of observable quantities may, under certain circumstances, be 

partitioned into a number of components associated with the nature of classification of the 

data. The systematic procedure for achieving this is called Analysis of Variance. The initial 

techniques of the analysis of variance were developed by the statistician and geneticist R. A. 

Fisher in the 1920s and 1930s, and is sometimes known as Fisher's analysis of variance, due 

to the use of Fisher's F-distribution as part of the test of statistical significance. 

Thus, ANOVA is a statistical technique that can be used to evaluate whether there are 

differences between the average value, or mean, across several population groups. With this 

model, the response variable is continuous in nature, whereas the predictor variables are 

http://en.wikipedia.org/wiki/Statistician
http://en.wikipedia.org/wiki/Geneticist
http://en.wikipedia.org/wiki/Ronald_Fisher
http://en.wikipedia.org/wiki/Ronald_Fisher
http://en.wikipedia.org/wiki/F-distribution
http://en.wikipedia.org/wiki/Statistical_significance
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categorical. For example, in a clinical trial of hypertensive patients, ANOVA methods could 

be used to compare the effectiveness of three different drugs in lowering blood pressure. 

Alternatively, ANOVA could be used to determine whether infant birth weight is 

significantly different among mothers who smoked during pregnancy relative to those who 

did not. In a particular case, where two population means are being compared, ANOVA is 

equivalent to the independent two-sample t-test. 

The fixed-effects model of ANOVA applies to situations in which the experimenter applies 

several treatments to the subjects of the experiment to see if the response variable values 

change. This allows the experimenter to estimate the ranges of response variable values that 

the treatment would generate in the population as a whole. In it factors are fixed and are 

attributable to a finite set of levels of factor eg. Sex, year, variety, fertilizer etc.  

Consider for example a clinical trial where three drugs are administered on a group of men 

and women some of whom are married and some are unmarried.  The three classifications of 

sex, drug and marital status that identify the source of each datum are known as factors.  The 

individual classification of each factor is known as levels of the factors.  Thus, in this 

example there are 3 levels of factor drug, 2 levels of factor sex and 2 levels of marital status. 

Here all the effects are fixed.  Random effects models are used when the treatments are not 

fixed. This occurs when the various treatments (also known as factor levels) are sampled 

from a larger population. When factors are random, these are generally attributable to infinite 

set of levels of a factor of which a random sample are deemed to occur   eg. research stations, 

clinics in Delhi, sire, etc. Suppose new inject-able insulin is to be tested using 15 different 

clinics of Delhi state. It is reasonable to assume that these clinics are random sample from a 

population of clinics from Delhi. It describe the situations where both fixed and random 

effects are present. 

In any ANOVA model, general mean is always taken as fixed effect and error is always taken 

as random effect. Thus class of model can be classified on the basis of factors, other than 

these two factors. ANOVA can be viewed as a generalization of t-tests: a comparison of 

differences of means across more than two groups.  

The ANOVA is valid under certain assumptions. These assumptions are: 

 Samples have been drawn from the populations that are normally distributed. 

 Observations are independent and are distributed normally with mean zero and 

variance σ2. 

 Effects are additive in nature. 

 

http://en.wikipedia.org/wiki/Response_variable
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The ANOVA is performed as one-way, two-way, three-way, etc. ANOVA when the number 

of factors is one, two or three respectively. In general if the number of factors is more, it is 

termed as multi-way ANOVA.   

In this chapter, three basic designs viz., Completely randomized design (CRD), Randomized 

Complete Block Design (RCBD) and Latin Square Design (LSD) are explained in detail.  

Completely Randomized Design 

Designs are usually characterized by the nature of grouping of experimental units and the 

procedure of random allocation of treatments to the experimental units.  In a completely 

randomized design the units are taken in a single group.  As far as possible the units forming 

the group are homogeneous.  This is a design in which only randomization and replication are 

used.  There is no use of local control here.  

Let there be v treatments in an experiment and n homogeneous experimental units.  Let the ith  

treatment be replicated ir times (i = 1,2,…, v) such that nr
v

1i

i 


. The treatments are allotted 

at random to the units. 

Normally the number of replications for different treatments should be equal as it ensures 

equal precision of estimates of the treatment effects.  The actual number of replications is, 

however, determined by the availability of experimental resources and the requirement of 

precision and sensitivity of comparisons.  If the experimental material for some treatments is 

available in limited quantities, the numbers of their replication are reduced.  If the estimates 

of certain treatment effects are required with more precision, the numbers of their replication 

are increased.   

Randomization 

There are several methods of random allocation of treatments to the experimental units.  The 

v treatments are first numbered in any order from 1 to v.  The n experimental units are also 

numbered suitably.  One of the methods uses the random number tables.  Any page of a 

random number table is taken.  If v is a one-digit number, then the table is consulted digit by 

digit.  If v is a two-digit number, then two-digit random numbers are consulted.  All numbers 

greater than v including zero are ignored. 

Let the first number chosen be 1n ; then the treatment numbered 1n is allotted to the first unit.  

If the second number is 2n  which may or may not be equal to n1 then the treatment numbered 

2n  is allotted to the second unit.  This procedure is continued.  When the ith treatment 

number has occurred ir  times,  vi ,...,2,1  this treatment is ignored subsequently.  This 

process terminates when all the units are exhausted. 
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One drawback of the above procedure is that sometimes a very large number of random 

numbers may have to be ignored because they are greater than v.  It may even happen that the 

random number table is exhausted before the allocation is complete.  To avoid this difficulty 

the following procedure is adopted.  We have described the procedure by taking v to be a 

two-digit number. Let P be the highest two-digit number divisible by v. Then all numbers 

greater than P and zero are ignored.  If a selected random number is less than v, then it is used 

as such.  If it is greater than or equal to v, then it is divided by v and the remainder is taken to 

the random number.  When a number is completely divisible by v, then the random number is 

v.  If v is an n-digit number, then P is taken to be the highest n-digit number divisible by v.  

The rest of the procedure is the same as above. 

Analysis   

This design provides a one-way classified data according to levels of a single factor.  For its 

analysis the following model is taken: 

                       ,iijiij r1,jv;,1,i           ,ety     

where ijy is the random variable corresponding to the observation ijy obtained from the jth 

replicate of the ith treatment,  is the general mean, it is the fixed effect of the ith treatment 

and ije  is the error component which is a random variable assumed to be normally and 

independently distributed with zero means and a constant variance  2.   
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ANALYSIS OF VARIANCE  
Sources of 

variation 

Degrees of 

freedom (D.F.) 

Sum of squares (S.S.) Mean squares (M.S.) F 

Treatments v – 1 SST
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MST = SST / (v - 1) 

 

MST/MSE 

Error n – v SSE = by subtraction MSE = 

SSE / (n - v) 

 

Total n – 1 
.F.Cy

ij

2
ij   

  

The hypothesis that the treatments have equal effects is tested by F-test where F is the ratio 

MST / MSE with (v - 1) and (n - v) degrees of freedom.   
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Randomized Complete Block Design 

It has been seen that when the experimental units are homogeneous then a CRD should be 

adopted.  In any experiment, however, besides treatments the experimental material is a 

major source of variability in the data.  When experiments require a large number of 

experimental units, the experimental units may not be homogeneous, and in such situations 

CRD can not be recommended.   When the experimental units are heterogeneous, a part of 

the variability can be accounted for by grouping the experimental units in such a way that 

experimental units within each group are as homogeneous as possible.  The treatments are 

then allotted randomly to the experimental units within each group (or blocks). The principle 

of first forming homogeneous groups of the experimental units and then allotting at random 

each treatment once in each group is known as local control.  This results in an increase in 

precision of estimates of the treatment contrasts, due to the fact that error variance that is a 

function of comparisons within blocks, is smaller because of homogeneous blocks.  This type 

of allocation makes it possible to eliminate from error variance a portion of variation 

attributable to block differences.  If, however, variation between the blocks is not 

significantly large, this type of grouping of the units does not lead to any advantage; rather 

some degrees of freedom of the error variance is lost without any consequent decrease in the 

error variance.  In such situations it is not desirable to adopt randomized complete block 

designs in preference to completely randomized designs. 

If the number of experimental units within each group is same as the number of treatments 

and if every treatment appears precisely once in each group then such an arrangement is 

called a randomized complete block design. 

Suppose the experimenter wants to study v treatments.  Each of the treatments is replicated r 

times (the number of blocks) in the design.  The total number of experimental units is, 

therefore, vr.  These units are arranged into r groups of size v each.  The error control 

measure in this design consists of making the units in each of these groups homogeneous.  

The number of blocks in the design is the same as the number of replications.  The v 

treatments are allotted at random to the v plots in each block.  This type of homogeneous 

grouping of the experimental units and the random allocation of the treatments separately in 

each block are the two main characteristic features of randomized block designs.  The 

availability of resources and considerations of cost and precision determine actual number of 

replications in the design.  

Analysis 

The data collected from experiments with randomized block designs form a two-way 

classification, that is, classified according to the levels of two factors, viz., blocks and 

treatments.  There are vr cells in the two-way table with one observation in each cell.  The 
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data are orthogonal and therefore the design is called an orthogonal design. We take the 

following model:  

 ,
r,...,2,1j

;v,...,2,1i
            ,ebty ijjiij 












   

where ijy  denotes the observation from ith treatment in jth block.  The fixed effects ji b,t,  

denote respectively the general mean, effect of the ith treatment and effect of the jth block. The 

random variable ije  is the error component associated with ijy .  These are assumed to be 

normally and independently distributed with zero means and a constant variance  2.   

Following the method of analysis of variance for finding sums of squares due to blocks, 

treatments and error for the two-way classification, the different sums of squares are obtained 

as follows: Let  v,...,2,1i  Ty i

j

ij   = total of observations from ith treatment and 

   By

j

jij   r,,1j   = total of observations from jth block.  These are the marginal totals 

of the two-way data table.  Let further, .GBT

j

j

i

i   

Correction factor (C.F.) = G2/rv, Sum of squares due to treatments .F.C
r

T

i

2
i  , 

Sum of squares due to blocks .F.C
v

B

j

2
j
 , Total sum of squares  = .F.Cy

ij

2
ij   

ANALYSIS OF VARIANCE  

Sources of 

variation 

Degrees of 

freedom (D.F.) 

Sum of squares 

(S.S.) 

Mean squares 

(M.S.) 

F 

Blocks r - 1 

SSB  .F.C
v

B

j

2
j
  

 

MSB = SSB / (r - 1) 

 

MSB/MSE 

Treatments v - 1 
SST .F.C

r

T

i

2
i   

 

MST = SST / (v - 1) 

 

MST/MSE 

Error (r - 1)(v - 1) SSE = by subtraction MSE = 

SSE / (v - 1)(r - 1) 

 

Total vr - 1 .F.Cy

ij

2
ij     

 

The hypothesis that the treatments have equal effects is tested by F-test, where F is the ratio 

MST / MSE with (v - 1) and (v - 1)(r - 1) degrees of freedom.  We may then be interested to 

either compare the treatments in pairs or evaluate special contrasts depending upon the 

objectives of the experiment.  This is done as follows:   
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The critical difference for testing the significance of the difference of two treatment effects, 

say ji tt   is r/MSE2t.D.C 2/),1r)(1v(  , where 2/),1r)(1v(t   is the value of 

Student's t at the level of significance  and degree of freedom (v - 1)(r - 1).  If the difference 

of any two-treatment means is greater than the C.D. value, the corresponding treatment 

effects are significantly different.  

 

Latin Square Design 

Latin square designs are normally used in experiments where it is required to remove the 

heterogeneity of experimental material in two directions.  These designs require that the 

number of replications equal the number of treatments or varieties.   

Definition 1.  A Latin square arrangement is an arrangement of v symbols in v2
 cells arranged 

in v rows and v columns, such that every symbol occurs precisely once in each row and 

precisely once in each column.  The term v is known as the order of the Latin square. 

If the symbols are taken as A, B, C, D, a Latin square arrangement of order 4 is as follows: 

    A B C D 

    B C D A 

    C D A B 

    D A B C 

 

A Latin square is said to be in the standard form if the symbols in the first row and first 

column are in natural order, and it is said to be in the semi-standard form if the symbols of 

the first row are in natural order.  Some authors denote both of these concepts by the term 

standard form.  However, there is a need to distinguish between these two concepts.  The 

standard form is used for randomizing the Latin-square designs, and the semi-standard form 

is needed for studying the properties of the orthogonal Latin squares. 

Definition 2.  If in two Latin squares of the same order, when superimposed on one another, 

every ordered pair of symbols occurs exactly once, the two Latin squares are said to be 

orthogonal.  If the symbols of one Latin square are denoted by Latin letters and the symbols 

of the other are denoted by Greek letters, the pair of orthogonal Latin squares is also called a 

graeco-latin square. 

Definition 3.  If in a set of Latin squares every pair is orthogonal, the set is called a set of 

mutually orthogonal latin squares (MOLS).  It is also called a hypergraeco latin square. 

The following is an example of graeco latin square:  
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ABCD

BADC

CDAB

DCBA

                       









                         









ABCD

BADC

CDAB

DCBA

 

                                                  

We can verify that in the above arrangement every pair of ordered Latin and Greek symbols 

occurs exactly once, and hence the two latin squares under consideration constitute a 

graecolatin square. 

It is well known that the maximum number of MOLS possible of order v is v - 1.  A set of v - 

1 MOLS is known as a complete set of MOLS.  Complete sets of MOLS of order v exist 

when v is a prime or prime power.  

Randomization 

According to the definition of a Latin square design, treatments can be allocated to the v2 

experimental units (may be animal or plots) in a number of ways.  There are, therefore, a 

number of Latin squares of a given order.  The purpose of randomization is to select one of 

these squares at random.  The following is one of the methods of random selection of Latin 

squares. 

Let a v  v Latin square arrangement be first written by denoting treatments by Latin letters 

A, B, C, etc. or by numbers 1, 2, 3, etc.  Such arrangements are readily available in the Tables 

for Statisticians and Biometricians (Fisher and Yates, 1974).  One of these squares of any 

order can be written systematically as shown below for a 55 Latin square: 

                                         

DCBAE

CBAED

BAEDC

AEDCB

EDCBA

 

 

For the purpose of randomization rows and columns of the Latin square are rearranged 

randomly.  There is no randomization possible within the rows and/or columns.  For example, 

the following is a row randomized square of the above 55 Latin square; 

                                          

BAEDC

CBAED

DCBAE

AEDCB

EDCBA
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Next, the columns of the above row randomized square have been rearranged randomly to 

give the following random square: 

                                           

ACEDB

BDAEC

CEBAD

EBDCA

DACBE

 

As a result of row and column randomization, but not the randomization of the individual 

units, the whole arrangement remains a Latin square. 

Analysis of Latin Square Designs 

In Latin square designs there are three factors.  These are the factors P, Q, and treatments.  

The data collected from this design are, therefore, analyzed as a three-way classified data.  

Actually, there should have been 
3v  observations as there are three factors each at v levels.  

But because of the particular allocation of treatments to the cells, there is only one 

observation per cell instead of v in the usual three way classified orthogonal data.  As a result 

we can obtain only the sums of squares due to each of the three factors and error sum of 

squares.  None of the interaction sums of squares of the factors can be obtained.  

Accordingly, we take the model 

 ijssjiijs etcrY     

 

where ijsy  denotes the observation in the ith row, jth column and under the sth treatment;  

 v,...,2,1s,j,it,c,r, sji   are fixed effects denoting in order the general mean, the row, the 

column and the treatment effects.  The ijse is the error component, assumed to be 

independently and normally distributed with zero mean and a constant variance, 
2 . 

 

The analysis is conducted by following a similar procedure as described for the analysis of 

two-way classified data.  The different sums of squares are obtained as below:  Let the data 

be arranged first in a row  column table such that ijy denotes the observation of (i,  j)th cell 

of table. 
 

Let  ,v1,2,...,i total row iyR

j

th
iji   ,v1,2,...,j total column jyC th

i

ijj   

sT  sum of those observations which come from sth treatment (s= 1,2,…,v),        

.total grandRG

i

i   Correction factor, C.F.= .
v

G

2

2

 Treatment sum of squares = 



High Dimensional Genome data Analysis by R and Open Source Tools CAAST-2019 

 

Page | 295 

.F.C
v

T

s

2
s  , Row sum of squares = .F.C

v

R

i

2
i  ,   Column sum of squares = 

.F.C
v

C

j

2
j
  

 

Analysis of Variance of v  v Latin Square Design 

Sources of  Variation D.F. S.S. M.S. F 

Rows v -1 
.F.C

v

R

i

2
i   

  

Columns v - 1 

.F.C
v

C

j

2
j
  

  

Treatments v - 1 
.F.C

v

T

s

2
s   

2
ts  2

e
2
t s/s  

Error (v - 1)(v - 2) By subtraction 2
es   

Total v2-1 .F.Cy

ij

2
ij     

 

The hypothesis of equal treatment effects is tested by F-test, where F is the ratio of treatment 

mean squares to error mean squares.  If F is not significant, treatment effects do not differ 

significantly among themselves.  If F is significant, further studies to test the significance of 

any treatment contrast can be made in exactly the same way as discussed for randomized 

block designs. 

Contrasts Analysis 

The main technique adopted for the analysis and interpretation of the data collected from an 

experiment is the analysis of variance technique that essentially consists of partitioning the 

total variation in an experiment into components ascribable to different sources of variation 

due to the controlled factors and error.  Analysis of variance clearly indicates a difference 

among the treatment means. The objective of an experiment is often much more specific than 

merely determining whether or not all of the treatments give rise to similar responses.  For 

examples, a chemical experiment might be run primarily to determine whether or not the 

yield of the chemical process increases as the amount of the catalyst is increased. A medical 

experimenter might be concerned with the efficacy of each of several new drugs as compared 

to a standard drug.  A nutrition experiment may be run to compare high fiber diets with low 

fiber diets. A plant breeder may be interested in comparing exotic collections with indigenous 

cultivars.  An agronomist may be interested in comparing the effects of biofertilisers and 

chemical fertilisers. A water technologist may be interested in studying the effect of nitrogen 
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with Farm Yard Manure over the nitrogen levels without farm yard manure in presence of 

irrigation. 

Contrasts 

Let y1, y2, …,yn denote n observations or any other quantities.  The linear function 

i

n

1i

i ylC 


 , where il 's are given number such that 0l
n

1i

i 


, is called a contrast of s'yi .  

Let y1, y2, …,yn be independent random variables with a common mean  and variance 
2 . 

The expected value of the random variable C is zero and its variance is .l
n

1i

2
i

2


  In what 

follows we shall not distinguish between a contrast and its corresponding random variable. 
 

Sum of squares (s.s.) of contrasts.  The sum of squares due to the contrast C is defined as 

)C(Var/C 22   = 
















n

1i

2
i

2 l/C . Here 
2  is unknown and is replaced by its unbiased 

estimate, i.e. mean square error.  It is known that this square has a 22 distribution with 

one degree of freedom when the s'yi  are normally distributed.  Thus the sum of squares due 

to two or more contrasts has also a 22 distribution if the contrasts are independent. 

Multiplication of any contrast by a constant does not change the contrast.  The sum of squares 

due to a contrast as defined above is not evidently changed by such multiplication. 

Orthogonal contrasts.  Two contrasts, i

n

1i

i1 ylC 


 and i

n

1i

i2 ylC 


  are said to be 

orthogonal if and only if 0ml
n

1i

ii 


.  This condition ensures that the covariance between 

1C  and 2C  is zero. 

 

When there are more than two contrasts, they are said to be mutually orthogonal if they are 

orthogonal pair wise.  For example, with four observations 4321 y,y,y ,y , we may write the 

following three mutually orthogonal contrasts: 

(i) 4321 yyyy   

(ii) 4321 yyyy   

(iii) 4321 yyyy      

The sum of squares due to a set of mutually orthogonal contrasts has a 22 distribution 

with as many degrees of freedom as the number of contrasts in the set.  
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Multiple Comparison Procedures 

Duncan's Multiple Range Test  

A widely used procedure for comparing all pairs of means is the multiple range test 

developed by Duncan (1955). The application of Duncan's multiple range test (DMRT) is 

similar to that of lsd test.  DMRT involves the computation of numerical boundaries that 

allow for the classification of the difference between any two treatment means as significant 

or non-significant.  DMRT requires computation of a series of values each corresponding to a 

specific set of pair comparisons unlike a single value for all pairwise comparisons in case of 

lsd.  It primarily depends on the standard error of the mean difference as in case of lsd.  This 

can easily be worked out using the estimate of variance of an estimated elementary treatment 

contrast through the design.   

For application of the DMRT rank all the treatment means in decreasing or increasing order 

based on the preference of the character under study.   

Tukey Method for All Pairwise Comparisons 

Tukey (1953) proposed a method for making all possible pairwise treatment comparisons. 

The test compares the difference between each pair of treatment effects with appropriate 

adjustment for multiple testing. This test is also known as Tukey’s honestly significant 

difference test or Tukey’s HSD. It may be mentioned here that Tukey's method is the best for 

all pairwise treatment comparisons. It can be used for completely randomized designs, 

randomized complete block designs and balanced incomplete block designs. It is believed to 

be applicable (conservative, true  level lower than stated) for other incomplete block 

designs as well, but this has not yet been proven. It can be extended to include all contrasts 

but Scheffe's method is generally better for these types of contrasts. 

Dunnett Method for Treatment-Versus-Control Comparisons 

Dunnett (1955) developed a method of multiple comparisons for obtaining a set of 

simultaneous confidence intervals for preplanned treatment-versus-control contrasts 

),...,2(1 vitti  where level 1 corresponds to the control treatment. The intervals are shorter 

than those given by the Scheffe, Tukey and Bonferroni methods, but the method should not 

be used for any other type of contrasts. For details on this method, a reference may be made 

to Dunnett (1955, 1964) and Hochberg and Tamhane (1987).  In general this procedure is, 

therefore, best for all treatment-versus-control comparisons. It can be used for completely 

randomized designs, randomized complete block designs. It can also be used for balanced 

incomplete block designs but not in other incomplete block designs without modifications to 

the corresponding multivariate t-distribution tables given in Hochberg and Tamhane (1987). 
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Stability Analysis - Use of Additive Main Effects and Multiplicative 

Interaction (AMMI) Model in Crop Improvement 
 

 

1. Introduction  

United Nations projections estimate that the world population will continue to grow from the 

current 6 billion to about 10 billion by 2050 [FAO, 1996]. The increase in population and the 

subsequent rise in the demand for agricultural produce are expected to be greater in regions 

where production is already insufficient, in particular in Sub-Saharan Africa and South Asia. 

The necessary increase in agricultural production represents a huge challenge to local farming 

systems and must come mainly from increased yield per unit area, given the limited scope for 

extension of cultivated land worldwide. To meet this requirement various crop improvement 

programmes all over the world have been initiated.  

Under any crop improvement programme a sample of promising genotypes are performance 

tested each year at a number of sites, representing the major growing area of the crop with a 

view to identify genotypes which possess the dual qualities of high-yield sustainability and 

low sensitivity to adverse changes in environmental condition. One of the important steps 

here is to assess the performance of improved genotypes in multi-environment (multi-

location, multi-year or both) trials. Quite often it is observed that varieties perform differently 

in different environments. A specified difference in environment may produce differential 

(different) effect on genotype. This interplay of genetic and non-genetic effects causing 

differential relative performances of genotypes in different environments is called Genotype 

x Environment Interaction (GEI). Presence of GEI causes difficulty in identifying superior 

genotypes. Not withstanding its importance GEI is often a distraction in genetical analysis for 

which effort is usually made to overcome such interactions.  One way of reducing GEI is 

through resistant breeding, usually adopted by plant breeders. Since only a minor part of the 

GEI can be attributed to controllable environmental determinants, much reduction in 

interaction can not be achieved. The most practical alternative is to produce progressively 

better adapted populations to the existing environments.  

A detailed description and discussion of various aspects of GE interaction analysis is 

available in numerous review articles (Freeman, 1973; Hill, 1975; Denis and Vincourt, 1982; 

Westcott, 1986; Lin et al., 1986; Becker and Léon, 1988; Crossa, 1990; Romagosa and Fox, 

1993; Cooper and DeLacy, 1994; van Eeuwijk, 1995; Brancourt-Hulmel et al., 1997; Kang, 

1998), in papers included in the books edited by Williams (1976), Kang (1990), Kang and 

Gauch (1996), Cooper and Hammer (1996) and Kang (2002), and in the monographs by 

Gauch (1992), Prabhakaran and Jain (1994) and Basford and Tukey (2000). In this lecture, 

analysis of GE data through AMMI approach will be mainly discussed along with the 

examples. 
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2. AMMI Model 

Gauch (1988, 1992) has advocated the use of AMMI analysis for yield trials.  Gauch and 

Zobel (1988) compared the performance of AMMI analysis with the ANOVA approach and 

regression approach and found that ANOVA fails to detect a significant interaction 

component and the regression approach accounts only a small portion of the interaction sum 

of squares only when the pattern fits a specific regression model. 

The AMMI model for T genotypes and S environments is given as 

 ijjnin

n

n
njiij eg Y 



1

      (1) 

 ),0(~ 2 Nij ;  i = 1,2,..., T; j = 1,2,..., S. 

where, ijY  is the mean yield of ith genotype in the jth environment;  is the general mean; ig  

is the ith genotypic effect; je  is the jth location effect; n  is the eigen value of the PCA axis 

n; in  and jn are the ith genotype jth environment PCA scores for the PCA axis n; ij  is 

the residual; n  is the number of PCA axes retained in the model. Ordinarily the number n  is 

judged on the basis of empirical consideration of F-test of significance [Gauch (1988, 

1992)]).  The residual combines the PCA scores from the N - n’ discarded axes, where N = 

min (t-1, s-1). The other constraints in the model (1) are 122  
i j

jnin   n; 

  

j

jnjn

i

inin 0 , nn*; and 1 > 2 >  > n > 0.  The model in (1) can be 

reparameterized as  

 ijjiij ZegY          (2) 

where ijZ = ijjnin

n

n

n  


1

. 

Let the estimate of interaction in the (i, j) th cell ijZ  be ijẐ  = jiij egY ˆˆˆ  . Using matrix 

notation,  denote Z = ( ijẐ ) a matrix of order T x S. Now, the estimates of the parameters of 

the model are: 

n̂ = the non-zero eigen values of ZZ (in descending order), and  

in̂  = the principal components of the row sum of squares and cross product matrix ZZ 

jn̂  = the principal components of the column sum of squares and cross product matrix ZZ 

Using these we can write  

  


N

n
jninnij ˆˆˆẑ

1

        (3) 
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It follows that, in
*  = in

c
n̂  is the ith genotype PCA score for the nth axis, and jn

*  = 

jn
c

n ̂ 1  is the nth PCA score of the jth environment; where c is a scaling constant varying 

between 0 to 1.   

 

Also, Using factor analytic decomposition, Z may be written as  

              ADB'Z          (4) 

where A is TxN orthonormal matrix, D is NxN diagonal matrix with elements 

Nn ......  21 , B is NxS orthonormal matrix, N is the rank of Z.  The matrices A, 

D and B of equation (4) can be obtained from the eigen vectors and eigen values of ZZ' of 

the order TxT.  The matrix A consists of the eigen vectors (principal components in ) of 

ZZ' and the diagonal matrix D with square root of eigen values as diagonal elements of ZZ'.  

The matrix B consists of the eigen vectors (principal components jn ) can be obtained by 

solving 1
ADZ'B

 . For many practical situations, the number of PCA axes to be retained is 

determined by testing the mean square of each axis with the estimate of residual through F-

statistic [Gollob (1968), Gauch (1988)]. The mean sum of squares of each PCA axis is equal 

to the ratio of square of the corresponding eigen value and the degree of freedom of each axis 

obtained as T + S  –1 –2n.  

 

Biplots 

 

The model formulation for AMMI shows its interaction part consists of summed orthogonal 

products.  Because of this form the interaction lends itself to graphical display in the form of 

so-called biplots (Gabriel, 1971).  Let us start with AMMI and assume that either two terms 

suffice for an adequate description of the interaction.  For AMMI the interaction consists then 

of the sum of two products: 1i
* 1j

*  + 2i
* 2j

* .  The choice of the scaling constant c 

depends on the purposes of the analysis.  Usually one is more interested in the genotypes and 

c is chosen equal to one (Kempton [12]). The features of the biplots, however, are not too 

critically dependent on c, and c = 0.5 may suit well for most problems. The genotypic scores, 

1i
*  and 2i

* , are now interpreted as coordinates for a planar depiction of the genotypes, 

and the environmental scores, 1j
*  and 2j

* , for a similar depiction of the environments.  

The scores determine the end points of genotypic and environmental vectors, which depart 

from the origin.  Simple geometry reveals that the interaction between a genotype i and an 

environment j can be obtained from a projection of either vector onto the other.  The reason is 

that the interaction according to an AMMI model with two product terms of interaction, 

1i
* 1j

*  + 2i
* 2j

* , is equal to the inner product between vectors ( 1i
* , 2i

* ) and 

( 1j
* , 2j

* ), or the projection of either vector onto the other, times the length of the vector 

on which projection takes place. It is easy to read from a biplot the relative interactions that 

genotypes exhibit in a particular environment. 

 

Example 

Shown below is the pod yield of 15 varieties of ground nut crop raised at 20 locations. The 

experimental design used is RCBD at each locations with 3 replications. 
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Using the SAS programme, SISGYS2 (Rao et al., 2004), the ANOVA for the ground nut data 

is obtained and presented in Table 1. It is evident from Table 1 that the use of biplots to 

explain efficiently the interaction is very much limited, since the first two PCA axes explain 

only 55% of the total interaction variation.  Hence at least six axes must be retained to 

explain GEI.  All other calculations can be seen from the out put. 

 

Table 1.  AMMI analysis of variance for groundnut data 

Source Df Sum of squares Mean square Variance ratio 

Genotypes 14 3565604.00 254686.00 12.63** 

Environments 19 107622796.00 5664357.70 280.86** 

G x E interaction 266 25408293.00 95519.90 4.74** 

PCA1 32 10240492.00 320015.38 12.05** 

PCA2 30 3899700.40 129990.01 4.90** 

PCA3 28 2795398.80 99835.67 3.76** 

PCA4 26 2377000.80 91423.11 3.44** 

PCA5 24 1961588.90 81732.87 3.08** 

PCA6 22 1372729.60 62396.80 2.35** 

Remainder 104 2761382.50 26551.75  

Average error 560 11294080.00 20168.00  

 

3. Simultaneous selection of varieties for yield and stability 

Genotype x environment interaction continues to be a challenging issue among plant 

breeders, geneticists, and production agronomists who conduct crop performance trials across 

diverse environments.  GEI can reduce progress from selection.  The methods of partitioning 

GEI into components attributable to each genotype measure the contribution of each 

genotype to GEI. A universally acceptable selection criterion that takes GEI into 

consideration does not exist.  Whenever an interaction is significant, the use of main effects, 

e.g. overall genotypes means across environments, is questionable.  Stability of performance 

should be considered an important aspect of yield trials.  Researchers need a statistic that 

provides a reliable measure of stability or consistency of performance across a range of 

environments, particularly one that reflects the contribution of each genotype to the total GEI.  

However, the stability measure alone is of limited use.  To be of practical utility in a breeding 

or cultivar testing programme, both stability and yield (or any other trait) must be considered 

simultaneously so as to make selection of genotypes more precise and reliable.  Also 

integration of stability of performance with yield through suitable measures will reduce the 

effect of GEI and will help in selecting cultivars in a more refined manner.   
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Several methods of simultaneous selection for yield and stability and relationships among 

them were discussed by Kang and Pham (1991). Kang (1993) discussed the reasons for 

emphasizing stability in the selection process. The development and use of Yield-Stability 

statistic (YSi) has enabled incorporation of stability in the selection process (Kang, 1993). A 

computer program (STABLE) for calculating this statistic is available free of charge (Kang 

and Magari, 1995). Kang’s Yield-Stability statistic (Kang, 1993) has been evaluated and 

found to be useful for recommending varieties (Pazdernik et al., 1997; Hussein et al., 2000). 

However, Bajpai and Prabhakaran (2000) observed that Kang’s rank-sum method has an 

inherent weakness that it is weighing heavily towards yield performance, apart from the 

arbitrariness in the scoring procedure. Accordingly they proposed three new indices (I1, I2, 

I3), which were found to be superior to Kang (1993) indices.  

AMMI based Selection indices for cultivar x environment data 

Rao et al. (2004) proposed a new stability measure and incorporating it as a stability 

component, a new family of selection indices is constructed. As evident from literature on 

AMMI the scope of biplots is very much limited. The inferences drawn from biplots will be 

valid only when the first principal component axis (PCA) or the first two PCAs explain 

maximum interaction variation. Whenever more than two axes are retained in the AMMI 

model, the biplot formulation of interaction will fail. Consequently the conclusions drawn on 

stability of varieties will be imprecise. However, the plant breeders would like to identify 

varieties which are stable and high yielding when the PCA axes retained in the AMMI model 

will be more than two, if the axes together accumulate considerable portion of interaction 

variation. Suppose that n' of the N axes are retained in the AMMI model to explain GEI, then 

the stability measure of i-th variety can now be determined as the end point of its vector *1i, 

*2i, . . . , *n'i from the origin 0'n'x1. This can also be taken as the squared Euclidean distance 

between the vector  = (*1i, *2i, . . ., *n'i)' from the origin, in the n'- dimensional 

Euclidean space.  

ASTABi = di(, 0) = 

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nin
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The algebric expression of the above said stability measure can also be derived from the 

spetral decomposition of the ZZ' matrix. As we know that 

ZZ'= 1 11 +2 22 +  + n nn +  + N NN , 
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The proposed stability measure of the i-th genotype in (5), mentioned earlier as a squared 

Euclidean distance, will be equal to the expression given in (6) when N = n', n' being the 

number of PCA axes retained in the AMMI model to explain the larger part of the GEI 

variation.  A variety is considered as highly stable when the value of ASTABi is small or 

closer to zero. The stability measure given in (5) will now be used as a stability component in 

the simultaneous selection index. A new family of simultaneous selection indices can thus be 

evolved, which consists of a yield component, measured as the ratio of the average 

performance of the ith genotype to the overall mean performance of the genotypes under test 

and a stability component, measured as the ratio of stability information (1/ASTABi) of the i 

th genotype to the mean stability information of the genotypes under test. The expression of 

the index is given as  

 




t

i i

i

..

.i
2

)
ASTAB

1

t

1
(

)ASTAB/1(

Y

Y
I       (7) 

 

where  is the ratio of the weights given to the stability component (w2) and yield component 

(w1) with a restriction that w1+ w2 = 1. The family of indices will consists of four indices I21, 

I22, I23 and I24 by considering the value of  as 1.0, 0.66, 0.43 and 0.25 respectively. The 

performance of the new family  is  assessed  by  standard  techniques  like,  the  percentage  

of  high  yielders   and  highly  stable  varieties  present  in  the  top  50%  of the varieties 

selected based on the indices. The rank correlations are worked out between yield based 

ranks and index based ranks, stability based ranks and index based ranks. It is evident from 

Table 1that at least six axes must be retained for using the proposed simultaneous selection 

indices. The rank orders based on yield, stability (ASTABi), proposed index and Bajpai index 

for each genotype and for different  values are presented in Table 2. Table 3 shows the rank 

correlations between yield, stability with the proposed indices and Bajpai indices.  Significant 

correlations of order 0.59, 0.61, 0.64 and 0.78 are observed between yield and proposed index 

when value of  is taken as 1.0, 0.67, 0.43 and 0.25 respectively, whereas with the Bajpai’s 

index the correlations are to the extent 0.49, 0.51, 0.55 and 0.64. Further, the correlations 

indicate superiority of the proposed index over the Bajpai’s index. Also Table 3 indicates the 

extent of high linear relationship between the rank orders of proposed index with the stability.  

Besides, these  correlations  are  at  par  with the correlations observed between stability and 

Bajpai’s index.  The proportion of high yielders and stable performers present in the 50% top 

selected genotypes based on simultaneous selection index values are presented in Table 4.  

From this table, it is evident  that among   the   top   50%   varieties  selected  based on the 

proposed  indices, around 70% are the high yielders and 85% are high stable performers. 

Since the proposed indices show significant correlations with both high yield and stability as 
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well as selects large proportion of high yielders and stable performers, they can be safely 

recommended to the breeders and production agronomists.    

A computer programme 

A SAS programme named SISGYS2 is developed for selecting genotypes simultaneously for 

yield and stability. This programme requires genotype means over replications from 

individual locations.  The input file should be in Excel and should contain a single field with 

yld as first row and the subsequent rows should be the mean yield over replications for each 

genotype nested within locations.  The input file should be named 'data.xls'.  The number of 

genotypes and the number of locations should be provided inside the programme codes.  The 

programme calculates the following steps: (i) genotype's mean performance (ii) genotype's 

stability measure (ASTABi) or di (iii) genotype's index value I.  Based on the index values 

genotypes are ranked. The genotype with highest index value will be ranked 1. The SAS code 

developed for the purpose is given in ANNEXURE-I.  To demonstrate the programme, the 

groundnut yields of 15 varieties in 20 locations, under cultivar X location set up, are taken. 

The input data is arranged in a nested fashion as genotypes within locations and output 

(result) is as below: 

 INDEX    RANK  YIELD  RANK1  STABILITY RANK2 

 VALUE    (t/ha)    (x 106) 

  1.33  5  1.51  2  1.98  8 

 1.22  8  1.31  12  1.76  6 

 1.11  12  1.39  7  4.04  13 

 1.03  14  1.32  11  5.95  14 

 1.01  15  1.30  13  6.03  15 

 1.59  1  1.69  1  1.31  3 

 1.46  3  1.47  4  1.23  2 

 1.19  10  1.27  15  1.79  7 

 1.21  9  1.37  8  2.18  9 

 1.13  11  1.37  10  3.24  12 

 1.33  6  1.37  9  1.41  4 

 1.36  4  1.50  3  1.71  5 

 1.23  7  1.46  5  2.67  10 

 1.47  2  1.44  6  1.15  1 

 1.07  13  1.27  14  3.16  11 
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Table 3.  Rank correlations between simultaneous selection indices and yield, stability for 

groundnut data. 

 

Index  

Type 

Weightage on components of index 

 = 1.00  = 0.67  = 0.43  = 0.25 

Yield Stability Yield Stability Yield Stability Yield Stability 

Proposed 

index 
0.596* 0.982** 0.614** 0.975** 0.639** 0.968** 0.782** 0.914** 

Bajpai’s 

index 
0.493NS 0.946** 0.514* 0.943** 0.553* 0.953** 0.639** 0.932** 

 

 

Table 4. Proportion of high yielders (HY) and highly stable performers (HSP) present out of 

top 50% genotypes selected on the basis of simultaneous selection indices  

 

Index  

Type 

Weightage () 

 = 1.00  = 0.67  = 0.43  = 0.25 

 

HY 

 

HSP 

 

HY 

 

HSP 

 

HY 

 

HSP 

 

HY 

 

HSP 

Proposed 

index 

0.71 
(6,14,7,12,1) 

0.86 
(6,14,7,11,12,2) 

0.71 
(6,14,7,12,1) 

0.86 
(6,14,7,11,12,2) 

0.71 
(6,14,7,12,1) 

0.86 
(6,14,7,11,12,2) 

0.86 
(6,14,7,12,1,13) 

0.86 
(6,14,7,11,12,2) 

Bajpai’s 

index 

0.71 
(14,7,6,1,12) 

0.86 
(14,7,6,2,12,11) 

0.71 
(14,7,6,1,12) 

0.86 
(14,7,6,2,12,11) 

0.71 
(14,7,6,1,12) 

0.86 
(14,7,6,2,12,11) 

0.71 
(14,7,6,1,12) 

0.86 
(14,7,6,2,12,11) 
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